EXASPO-3.5-7.8B-Instruct
Introduction
EXASPO-3.5-7.8B-Instruct is a language model specifically optimized for the Korean spoken(colloquial) language.
EXASPO-3.5-7.8B-Instruct is based on the LGAI-EXAONE/EXAONE-3.5-7.8B-Instruct and has undergone continual pre-training and instruction tuning using a Korean spoken-language dataset.
You can find the details of the base model here.
This repository contains the instruction-tuned 7.8B language model with the following features:
- Number of Parameters (without embeddings): 6.98B
- Number of Layers: 32
- Number of Attention Heads: GQA with 32 Q-heads and 8 KV-heads
- Vocab Size: 102,400
- Context Length: 32,768 tokens
Quickstart
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer
model_name = "JunHaHwang/EXASPO-3.5-7.8B-Instruct"
model = AutoModelForCausalLM.from_pretrained(
model_name,
torch_dtype=torch.bfloat16,
trust_remote_code=True,
device_map="auto"
)
tokenizer = AutoTokenizer.from_pretrained("LGAI-EXAONE/EXAONE-3.5-7.8B-Instruct")
prompt = "์ต๊ทผ ๊ฒช์ ์ผ ์ค ์ฌ๋ฐ๋ ์ฐ์ข ํ์ด์ค"
messages = [
{"role": "system",
"content": "You are a kind and helpful assistant."},
{"role": "user", "content": prompt}
]
input_ids = tokenizer.apply_chat_template(
messages,
tokenize=True,
add_generation_prompt=True,
return_tensors="pt"
)
output = model.generate(
input_ids.to("cuda"),
eos_token_id=tokenizer.eos_token_id,
max_new_tokens=512,
temperature=0.7,
repetition_penalty =1.2
)
print(tokenizer.decode(output[0]))
- Downloads last month
- 37
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
๐
Ask for provider support
Model tree for JunHaHwang/EXASPO-3.5-7.8B-Instruct
Base model
LGAI-EXAONE/EXAONE-3.5-7.8B-Instruct