Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks
Paper
•
1908.10084
•
Published
•
9
This is a sentence-transformers model finetuned from am-azadi/bilingual-embedding-large_Fine_Tuned_1e. It maps sentences & paragraphs to a 1024-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BilingualModel
(1): Pooling({'word_embedding_dimension': 1024, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("sentence_transformers_model_id")
# Run inference
sentences = [
'The terrorists evaporated in seconds A very rare scene of the moment the Egyptian planes bombed the terrorist elements in Sinai Watch the video here NB Please all our followers on our page subscribe to our YouTube channel We will publish everything new on the ground Open the channel link ',
'A very rare scene of the moment the Egyptian planes bombed the terrorist elements in Sinai This picture is not of an Egyptian warplane, but of an Israeli plane',
'Cars melt due to hot weather in Saudi Arabia No, these cars did not melt due to hot weather',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 1024]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
sentence_0 and sentence_1| sentence_0 | sentence_1 | |
|---|---|---|
| type | string | string |
| details |
|
|
| sentence_0 | sentence_1 |
|---|---|
HAPPENING NOW ; KENYA ELECTRIC BUS IS ON FIRE ALONG KAREN ROAD. |
Electric bus catches fire in Nairobi Video shows a methane-powered bus that caught fire in Italy, not an electric bus in Kenya |
RUPTLY Viewed 51,670 times 8 hours Snorr On the way down Khao Pak Thong Chai, route 3-4, Sattahip - Korat, all of them would have died. pity Incident 27 Jun. |
Video showing road accidents in Thailand? This is a video published in a news report about a car crash in Russia. |
The image that went around the world! This photo won the best of the decade award and led to the author to depression, the author narrated in his description; "Cheetahs chased a mother deer and her 2 babies, she offered herself so that her children could escape and in the photo looks like she watches her babies run to safety as she is about to be devoured" How many times have you stopped to think how many sacrifices your parents do for you. While you have fun, laugh and you enjoy life, they give theirs. |
Cheetahs chased a mother deer and she volunteered so her children could escape Behind the picture: Cheetahs learned from their mother how to capture prey |
MultipleNegativesRankingLoss with these parameters:{
"scale": 20.0,
"similarity_fct": "cos_sim"
}
per_device_train_batch_size: 2per_device_eval_batch_size: 2num_train_epochs: 1multi_dataset_batch_sampler: round_robinoverwrite_output_dir: Falsedo_predict: Falseeval_strategy: noprediction_loss_only: Trueper_device_train_batch_size: 2per_device_eval_batch_size: 2per_gpu_train_batch_size: Noneper_gpu_eval_batch_size: Nonegradient_accumulation_steps: 1eval_accumulation_steps: Nonetorch_empty_cache_steps: Nonelearning_rate: 5e-05weight_decay: 0.0adam_beta1: 0.9adam_beta2: 0.999adam_epsilon: 1e-08max_grad_norm: 1num_train_epochs: 1max_steps: -1lr_scheduler_type: linearlr_scheduler_kwargs: {}warmup_ratio: 0.0warmup_steps: 0log_level: passivelog_level_replica: warninglog_on_each_node: Truelogging_nan_inf_filter: Truesave_safetensors: Truesave_on_each_node: Falsesave_only_model: Falserestore_callback_states_from_checkpoint: Falseno_cuda: Falseuse_cpu: Falseuse_mps_device: Falseseed: 42data_seed: Nonejit_mode_eval: Falseuse_ipex: Falsebf16: Falsefp16: Falsefp16_opt_level: O1half_precision_backend: autobf16_full_eval: Falsefp16_full_eval: Falsetf32: Nonelocal_rank: 0ddp_backend: Nonetpu_num_cores: Nonetpu_metrics_debug: Falsedebug: []dataloader_drop_last: Falsedataloader_num_workers: 0dataloader_prefetch_factor: Nonepast_index: -1disable_tqdm: Falseremove_unused_columns: Truelabel_names: Noneload_best_model_at_end: Falseignore_data_skip: Falsefsdp: []fsdp_min_num_params: 0fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap: Noneaccelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed: Nonelabel_smoothing_factor: 0.0optim: adamw_torchoptim_args: Noneadafactor: Falsegroup_by_length: Falselength_column_name: lengthddp_find_unused_parameters: Noneddp_bucket_cap_mb: Noneddp_broadcast_buffers: Falsedataloader_pin_memory: Truedataloader_persistent_workers: Falseskip_memory_metrics: Trueuse_legacy_prediction_loop: Falsepush_to_hub: Falseresume_from_checkpoint: Nonehub_model_id: Nonehub_strategy: every_savehub_private_repo: Nonehub_always_push: Falsegradient_checkpointing: Falsegradient_checkpointing_kwargs: Noneinclude_inputs_for_metrics: Falseinclude_for_metrics: []eval_do_concat_batches: Truefp16_backend: autopush_to_hub_model_id: Nonepush_to_hub_organization: Nonemp_parameters: auto_find_batch_size: Falsefull_determinism: Falsetorchdynamo: Noneray_scope: lastddp_timeout: 1800torch_compile: Falsetorch_compile_backend: Nonetorch_compile_mode: Nonedispatch_batches: Nonesplit_batches: Noneinclude_tokens_per_second: Falseinclude_num_input_tokens_seen: Falseneftune_noise_alpha: Noneoptim_target_modules: Nonebatch_eval_metrics: Falseeval_on_start: Falseuse_liger_kernel: Falseeval_use_gather_object: Falseaverage_tokens_across_devices: Falseprompts: Nonebatch_sampler: batch_samplermulti_dataset_batch_sampler: round_robin| Epoch | Step | Training Loss |
|---|---|---|
| 0.0459 | 500 | 0.0135 |
| 0.0919 | 1000 | 0.024 |
| 0.1378 | 1500 | 0.0073 |
| 0.1837 | 2000 | 0.0103 |
| 0.2297 | 2500 | 0.0265 |
| 0.2756 | 3000 | 0.0209 |
| 0.3215 | 3500 | 0.0308 |
| 0.3675 | 4000 | 0.0301 |
| 0.4134 | 4500 | 0.0382 |
| 0.4593 | 5000 | 0.0164 |
| 0.5053 | 5500 | 0.0251 |
| 0.5512 | 6000 | 0.0141 |
| 0.5972 | 6500 | 0.0131 |
| 0.6431 | 7000 | 0.006 |
| 0.6890 | 7500 | 0.0261 |
| 0.7350 | 8000 | 0.0111 |
| 0.7809 | 8500 | 0.0089 |
| 0.8268 | 9000 | 0.0201 |
| 0.8728 | 9500 | 0.0175 |
| 0.9187 | 10000 | 0.0086 |
| 0.9646 | 10500 | 0.0049 |
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
@misc{henderson2017efficient,
title={Efficient Natural Language Response Suggestion for Smart Reply},
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
year={2017},
eprint={1705.00652},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
Base model
Lajavaness/bilingual-embedding-large