arthurcollet/Mellum-4b-sft-all-mlx-8bit
This model arthurcollet/Mellum-4b-sft-all-mlx-8bit was converted to MLX format from JetBrains/Mellum-4b-sft-all using mlx-lm version 0.28.0.
Use with mlx
pip install mlx-lm
from mlx_lm import load, generate
model, tokenizer = load("arthurcollet/Mellum-4b-sft-all-mlx-8bit")
prompt = "hello"
if tokenizer.chat_template is not None:
messages = [{"role": "user", "content": prompt}]
prompt = tokenizer.apply_chat_template(
messages, add_generation_prompt=True
)
response = generate(model, tokenizer, prompt=prompt, verbose=True)
- Downloads last month
- 28
Model tree for arthurcollet/Mellum-4b-sft-all-mlx-8bit
Datasets used to train arthurcollet/Mellum-4b-sft-all-mlx-8bit
Evaluation results
- EM on RepoBench 1.1 (Python)self-reported0.282
- EM ≤ 8k on RepoBench 1.1 (Python)self-reported0.287
- EM on RepoBench 1.1 (Python)self-reported0.264
- EM on RepoBench 1.1 (Python)self-reported0.293
- EM on RepoBench 1.1 (Python)self-reported0.304
- EM on RepoBench 1.1 (Python)self-reported0.269
- EM on RepoBench 1.1 (Python)self-reported0.282
- EM on RepoBench 1.1 (Java)self-reported0.287
- EM ≤ 8k on RepoBench 1.1 (Java)self-reported0.302
- EM on RepoBench 1.1 (Java)self-reported0.288