|
|
import os |
|
|
import torch |
|
|
import numpy as np |
|
|
from torch.utils.data import Dataset, DataLoader |
|
|
from collections import OrderedDict |
|
|
import matplotlib.pyplot as plt |
|
|
import torch.nn as nn |
|
|
from torch import optim |
|
|
import torch.nn.functional as F |
|
|
|
|
|
|
|
|
from matplotlib.patches import Rectangle |
|
|
import argparse |
|
|
torch.set_float32_matmul_precision("medium") |
|
|
def main(model_name): |
|
|
|
|
|
if model_name == 'S2NO': |
|
|
from S2NO_pretrain import S2NO_pretrain |
|
|
model = S2NO_pretrain(width = 20).cuda() |
|
|
PATH = './S2NO/600k.ckpt' |
|
|
if model_name == 'FNO': |
|
|
from FNO_pretrain import FNO_pretrain |
|
|
model = FNO_pretrain(features_ = 20).cuda() |
|
|
PATH = './FNO/600k.ckpt' |
|
|
if model_name == 'UNet': |
|
|
from UNet_pretrain import UNet_pretrain |
|
|
model =UNet_pretrain().cuda() |
|
|
PATH = './UNet/600k.ckpt' |
|
|
checkpoint = torch.load(PATH, map_location=lambda storage, loc: storage) |
|
|
model.load_state_dict(checkpoint['state_dict']) |
|
|
|
|
|
homo = np.load('./homo/homo_600k.npy')[0:1,:,:] |
|
|
field_real = torch.tensor(np.real(homo)) |
|
|
field_imag = torch.tensor(np.imag(homo)) |
|
|
model.eval() |
|
|
|
|
|
def inference(data, field_real, field_imag): |
|
|
data = (1500/data - 1)*30 |
|
|
data = torch.tensor(data, dtype=torch.float).cuda() |
|
|
batchsize = field_real.shape[0] |
|
|
sos = data.reshape(1,480, 480, 1).repeat(batchsize,1,1,1).cuda() |
|
|
field = torch.concat([field_real.unsqueeze(-1), field_imag.unsqueeze(-1)], dim=-1).cuda() * 2e-3 |
|
|
src = field |
|
|
pred = model(sos, src) |
|
|
pred = pred * 500 |
|
|
pred = pred[...,0] + 1j*pred[...,1] |
|
|
return pred |
|
|
|
|
|
|
|
|
sub1_row_start, sub1_row_end = 323, 343 |
|
|
sub1_col_start, sub1_col_end = 230, 250 |
|
|
sub2_row_start, sub2_row_end = 234, 254 |
|
|
sub2_col_start, sub2_col_end = 184, 204 |
|
|
|
|
|
index = [36] |
|
|
for i in range(len(index)): |
|
|
path = f'./speed/test_{index[i]}.npy' |
|
|
data = np.load(path) |
|
|
|
|
|
pred = inference(data, field_real, field_imag) |
|
|
pred_np = pred.detach().cpu().numpy() |
|
|
pred_real = np.real(pred_np) |
|
|
|
|
|
|
|
|
|
|
|
fig, ax = plt.subplots(figsize=(5,5), dpi=300) |
|
|
ax.imshow(np.squeeze(pred_real)[ |
|
|
sub1_row_start:sub1_row_end, |
|
|
sub1_col_start:sub1_col_end], |
|
|
cmap='seismic', |
|
|
vmin=-2000, vmax=2000) |
|
|
ax.spines['top'].set_visible(False) |
|
|
ax.spines['right'].set_visible(False) |
|
|
ax.spines['bottom'].set_visible(False) |
|
|
ax.spines['left'].set_visible(False) |
|
|
ax.get_xaxis().set_visible(False) |
|
|
ax.get_yaxis().set_visible(False) |
|
|
plt.savefig(f'./result/{model_name}_limb_{index[i]}_small1.pdf', |
|
|
bbox_inches='tight', pad_inches=0) |
|
|
plt.close() |
|
|
|
|
|
|
|
|
fig, ax = plt.subplots(figsize=(5,5), dpi=300) |
|
|
ax.imshow(np.squeeze(pred_real)[ |
|
|
sub2_row_start:sub2_row_end, |
|
|
sub2_col_start:sub2_col_end], |
|
|
cmap='seismic', |
|
|
vmin=-2000, vmax=2000) |
|
|
ax.spines['top'].set_visible(False) |
|
|
ax.spines['right'].set_visible(False) |
|
|
ax.spines['bottom'].set_visible(False) |
|
|
ax.spines['left'].set_visible(False) |
|
|
ax.get_xaxis().set_visible(False) |
|
|
ax.get_yaxis().set_visible(False) |
|
|
plt.savefig(f'./result/{model_name}_limb_{index[i]}_small2.pdf', |
|
|
bbox_inches='tight', pad_inches=0) |
|
|
plt.close() |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
fig, ax = plt.subplots(figsize=(5,5), dpi=300) |
|
|
ax.imshow(np.squeeze(pred_real), |
|
|
cmap='seismic', |
|
|
vmin=-2000, vmax=2000) |
|
|
|
|
|
|
|
|
rect1 = Rectangle((sub1_col_start, sub1_row_start), |
|
|
sub1_col_end - sub1_col_start, |
|
|
sub1_row_end - sub1_row_start, |
|
|
fill=False, |
|
|
edgecolor='#8CA5D3', |
|
|
linewidth=2) |
|
|
ax.add_patch(rect1) |
|
|
|
|
|
|
|
|
rect2 = Rectangle((sub2_col_start, sub2_row_start), |
|
|
sub2_col_end - sub2_col_start, |
|
|
sub2_row_end - sub2_row_start, |
|
|
fill=False, |
|
|
edgecolor='#EDAD81', |
|
|
linewidth=2) |
|
|
ax.add_patch(rect2) |
|
|
|
|
|
ax.spines['top'].set_visible(False) |
|
|
ax.spines['right'].set_visible(False) |
|
|
ax.spines['bottom'].set_visible(False) |
|
|
ax.spines['left'].set_visible(False) |
|
|
ax.get_xaxis().set_visible(False) |
|
|
ax.get_yaxis().set_visible(False) |
|
|
|
|
|
|
|
|
plt.savefig(f'./result/{model_name}_limb_{index[i]}_with_box.pdf', |
|
|
bbox_inches='tight', pad_inches=0) |
|
|
plt.close() |
|
|
if __name__ == '__main__': |
|
|
|
|
|
parser = argparse.ArgumentParser(description='Run model inference with specified model.') |
|
|
parser.add_argument('--model_name', type=str, required=True, |
|
|
choices=['S2NO','FNO','UNet'], |
|
|
help='Name of the model to use (e.g., S2NO)') |
|
|
args = parser.parse_args() |
|
|
|
|
|
main(args.model_name) |