metadata
license: apache-2.0
language:
- ar
tags:
- islamic-finance
- fatwa
- question-answering
- evaluation
- benchmark
- arabic
size_categories:
- 1K<n<10K
task_categories:
- question-answering
- text-generation
pretty_name: Fatwa QA Evaluation Dataset
Fatwa QA Evaluation Dataset
Dataset Description
This dataset contains Islamic finance and jurisprudence fatwa question-answer pairs for evaluating Arabic language models. This is an open-ended QA evaluation benchmark where models generate free-form answers.
Dataset Statistics
- Total Samples: 2,000
- Average Question Length: 243.9 characters
- Average Answer Length: 492.3 characters
Dataset Structure
Data Fields
id: Unique identifier (format:fatwa_eval_XXXXX)prompt: Full evaluation prompt (instruction + question + الإجابة:)question: Original question textanswer: Ground truth answercategory: Islamic finance categoryquestion_length: Character count of the questionanswer_length: Character count of the answer
Categories
- zakat: 792 samples
- riba: 407 samples
- murabaha: 234 samples
- gharar: 149 samples
- waqf: 124 samples
- ijara: 102 samples
- maysir: 64 samples
- musharaka: 44 samples
- mudharaba: 40 samples
- takaful: 38 samples
- sukuk: 6 samples
Prompt Format
بناءً على أحكام الشريعة الإسلامية والفقه الإسلامي، أجب على السؤال التالي بطريقة مفصلة ومدعمة بالأدلة عند الإمكان. السؤال: [QUESTION] الإجابة:
Usage
from datasets import load_dataset
dataset = load_dataset("SahmBenchmark/fatwa-qa-evaluation")
# Access evaluation data
for example in dataset['test']:
print(f"ID: {example['id']}")
print(f"Prompt: {example['prompt']}")
print(f"Question: {example['question']}")
print(f"Answer: {example['answer']}")
print(f"Category: {example['category']}")
Evaluation Example
from datasets import load_dataset
from transformers import AutoModelForCausalLM, AutoTokenizer
# Load dataset and model
dataset = load_dataset("SahmBenchmark/fatwa-qa-evaluation")
model_name = "your-model-name"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForCausalLM.from_pretrained(model_name)
# Generate predictions
def generate_answer(prompt):
inputs = tokenizer(prompt, return_tensors="pt")
outputs = model.generate(**inputs, max_new_tokens=512)
return tokenizer.decode(outputs[0], skip_special_tokens=True)
# Evaluate
for example in dataset['test']:
prediction = generate_answer(example['prompt'])
ground_truth = example['answer']
# Compare prediction with ground_truth using your metrics
Categories
- zakat: Islamic almsgiving
- riba: Interest/usury-related rulings
- murabaha: Cost-plus financing
- gharar: Uncertainty in contracts
- waqf: Islamic endowment
- ijara: Islamic leasing
- maysir: Gambling-related rulings
- musharaka: Partnership financing
- mudharaba: Profit-sharing partnership
- takaful: Islamic insurance
- sukuk: Islamic bonds
Related Datasets
- Fatwa Training Dataset: Training data for this evaluation benchmark
- Fatwa MCQ Evaluation: Multiple choice evaluation version
Citation
@dataset{fatwa_qa_evaluation,
title={Fatwa QA Evaluation Dataset},
author={SahmBenchmark},
year={2025},
url={https://huggingface.co/datasets/SahmBenchmark/fatwa-qa-evaluation}
}
License
Apache 2.0 License