Dataset Viewer
Auto-converted to Parquet Duplicate
Search is not available for this dataset
image
imagewidth (px)
2.4k
2.4k
label
class label
3 classes
0hierarchical
0hierarchical
0hierarchical
0hierarchical
0hierarchical
0hierarchical
0hierarchical
0hierarchical
0hierarchical
1multiscale
1multiscale
1multiscale
1multiscale
1multiscale
1multiscale
2simple
2simple
2simple
2simple

Vlasiator Dataset for Machine Learning Studies

The data is stored in Zarr.

It can be downloaded to a local data directory with:

from huggingface_hub import snapshot_download

snapshot_download(
    repo_id="deinal/spacecast-data",
    repo_type="dataset",
    local_dir="data"
)

This will yield a local data folder that can be used with spacecast:

data/
├── graph/                 - Directory containing graphs for training
├── run_1.zarr/            - Vlasiator run 1 with ρ = 0.5 cm⁻³ solar wind
├── run_2.zarr/            - Vlasiator run 2 with ρ = 1.0 cm⁻³ solar wind
├── run_3.zarr/            - Vlasiator run 3 with ρ = 1.5 cm⁻³ solar wind
├── run_4.zarr/            - Vlasiator run 4 with ρ = 2.0 cm⁻³ solar wind
├── static.zarr/           - Static features x, z, r coordinates
├── vlasiator_config.yaml  - Configuration file for neural-lam
├── vlasiator_run_1.yaml   - Configuration file for datastore 1, referred to from vlasiator_config.yaml
├── vlasiator_run_2.yaml   - Configuration file for datastore 2, referred to from vlasiator_config.yaml
├── vlasiator_run_3.yaml   - Configuration file for datastore 3, referred to from vlasiator_config.yaml
└── vlasiator_run_4.yaml   - Configuration file for datastore 4, referred to from vlasiator_config.yaml        

Preprocess the runs with mllam-data-prep, run:

mllam_data_prep data/vlasiator_run_1.yaml
mllam_data_prep data/vlasiator_run_2.yaml
mllam_data_prep data/vlasiator_run_3.yaml
mllam_data_prep data/vlasiator_run_4.yaml

This produces training-ready Zarr stores in the data directory.

Simple, multiscale, and hierarchical graphs are included already, but can be created using the following commands:

python -m neural_lam.create_graph --config_path data/vlasiator_config.yaml --name simple --levels 1 --coarsen-factor 5 --plot
python -m neural_lam.create_graph --config_path data/vlasiator_config.yaml --name multiscale --levels 3 --coarsen-factor 5 --plot
python -m neural_lam.create_graph --config_path data/vlasiator_config.yaml --name hierarchical --levels 3 --coarsen-factor 5 --hierarchical --plot

Citation

@misc{vlasiator2025mldata,
  title        = {Vlasiator Dataset for Machine Learning Studies},
  author       = {Zaitsev, Ivan and Holmberg, Daniel and Alho, Markku and Bouri, Ioanna and 
                  Franssila, Fanni and Jeong, Haewon and Palmroth, Minna and Roos, Teemu},
  year         = {2025},
  publisher    = {Hugging Face},
  url          = {https://huggingface.co/datasets/deinal/spacecast-data},
  doi          = {10.57967/hf/7027},
}
Downloads last month
432