The dataset viewer is not available for this dataset.
Error code: ConfigNamesError
Exception: ValueError
Message: Feature type 'Nifti' not found. Available feature types: ['Value', 'ClassLabel', 'Translation', 'TranslationVariableLanguages', 'LargeList', 'List', 'Array2D', 'Array3D', 'Array4D', 'Array5D', 'Audio', 'Image', 'Video', 'Pdf']
Traceback: Traceback (most recent call last):
File "/src/services/worker/src/worker/job_runners/dataset/config_names.py", line 66, in compute_config_names_response
config_names = get_dataset_config_names(
^^^^^^^^^^^^^^^^^^^^^^^^^
File "/usr/local/lib/python3.12/site-packages/datasets/inspect.py", line 161, in get_dataset_config_names
dataset_module = dataset_module_factory(
^^^^^^^^^^^^^^^^^^^^^^^
File "/usr/local/lib/python3.12/site-packages/datasets/load.py", line 1031, in dataset_module_factory
raise e1 from None
File "/usr/local/lib/python3.12/site-packages/datasets/load.py", line 1004, in dataset_module_factory
).get_module()
^^^^^^^^^^^^
File "/usr/local/lib/python3.12/site-packages/datasets/load.py", line 605, in get_module
dataset_infos = DatasetInfosDict.from_dataset_card_data(dataset_card_data)
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "/usr/local/lib/python3.12/site-packages/datasets/info.py", line 386, in from_dataset_card_data
dataset_info = DatasetInfo._from_yaml_dict(dataset_card_data["dataset_info"])
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "/usr/local/lib/python3.12/site-packages/datasets/info.py", line 317, in _from_yaml_dict
yaml_data["features"] = Features._from_yaml_list(yaml_data["features"])
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "/usr/local/lib/python3.12/site-packages/datasets/features/features.py", line 2031, in _from_yaml_list
return cls.from_dict(from_yaml_inner(yaml_data))
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "/usr/local/lib/python3.12/site-packages/datasets/features/features.py", line 1876, in from_dict
obj = generate_from_dict(dic)
^^^^^^^^^^^^^^^^^^^^^^^
File "/usr/local/lib/python3.12/site-packages/datasets/features/features.py", line 1463, in generate_from_dict
return {key: generate_from_dict(value) for key, value in obj.items()}
^^^^^^^^^^^^^^^^^^^^^^^^^
File "/usr/local/lib/python3.12/site-packages/datasets/features/features.py", line 1469, in generate_from_dict
raise ValueError(f"Feature type '{_type}' not found. Available feature types: {list(_FEATURE_TYPES.keys())}")
ValueError: Feature type 'Nifti' not found. Available feature types: ['Value', 'ClassLabel', 'Translation', 'TranslationVariableLanguages', 'LargeList', 'List', 'Array2D', 'Array3D', 'Array4D', 'Array5D', 'Audio', 'Image', 'Video', 'Pdf']Need help to make the dataset viewer work? Make sure to review how to configure the dataset viewer, and open a discussion for direct support.
Aphasia Recovery Cohort (ARC)
Multimodal neuroimaging dataset for stroke-induced aphasia research
Dataset Summary
The Aphasia Recovery Cohort (ARC) is a large-scale, longitudinal neuroimaging dataset containing multimodal MRI scans from 230 chronic stroke patients with aphasia. This HuggingFace-hosted version provides direct Python access to the BIDS-formatted data with embedded NIfTI files.
Key Statistics:
| Metric | Count |
|---|---|
| Subjects | 230 |
| Sessions | 902 |
| T1-weighted scans | 447 |
| T2-weighted scans | 441 |
| FLAIR scans | 235 |
| BOLD fMRI runs | 1,402 |
| Diffusion (DWI) runs | 2,089 |
| Single-band reference | 322 |
| Expert lesion masks | 228 |
Supported Tasks
- Lesion Segmentation: Expert-drawn lesion masks enable training/evaluation of stroke lesion segmentation models
- Aphasia Severity Prediction: WAB-AQ scores (0-100) provide continuous severity labels for regression tasks
- Aphasia Type Classification: WAB-derived aphasia type labels (Broca's, Wernicke's, Anomic, etc.)
- Longitudinal Analysis: Multiple sessions per subject enable recovery trajectory modeling
Languages
Clinical metadata and documentation are in English.
Dataset Structure
Data Instance
Each row represents a single scanning session (subject + timepoint):
{
"subject_id": "sub-M2001",
"session_id": "ses-1",
"t1w": <nibabel.Nifti1Image>, # T1-weighted structural (256, 256, 176)
"t2w": <nibabel.Nifti1Image>, # T2-weighted structural
"flair": <nibabel.Nifti1Image>, # FLAIR structural
"bold": [<Nifti1Image>, ...], # List of BOLD fMRI runs (4D)
"dwi": [<Nifti1Image>, ...], # List of diffusion runs
"sbref": [<Nifti1Image>, ...], # List of single-band references
"lesion": <nibabel.Nifti1Image>, # Expert lesion mask (binary)
"age_at_stroke": 58.0, # Age at stroke onset
"sex": "M", # Biological sex (M/F)
"wab_aq": 72.5, # WAB Aphasia Quotient (0-100)
"wab_type": "Anomic" # Aphasia classification
}
Data Fields
| Field | Type | Description |
|---|---|---|
subject_id |
string |
BIDS subject identifier (e.g., "sub-M2001") |
session_id |
string |
BIDS session identifier (e.g., "ses-1") |
t1w |
Nifti |
T1-weighted structural MRI (nullable) |
t2w |
Nifti |
T2-weighted structural MRI (nullable) |
flair |
Nifti |
FLAIR structural MRI (nullable) |
bold |
Sequence[Nifti] |
BOLD fMRI 4D time-series (all runs) |
dwi |
Sequence[Nifti] |
Diffusion-weighted imaging (all runs) |
sbref |
Sequence[Nifti] |
Single-band reference images (all runs) |
lesion |
Nifti |
Expert-drawn lesion segmentation mask (nullable) |
age_at_stroke |
float32 |
Subject age at stroke onset in years |
sex |
string |
Biological sex ("M" or "F") |
wab_aq |
float32 |
Western Aphasia Battery Aphasia Quotient (0-100) |
wab_type |
string |
Aphasia type classification |
Data Splits
| Split | Sessions | Description |
|---|---|---|
train |
902 | All sessions (no predefined train/test split) |
Note: Users should implement their own train/validation/test splits, ensuring no subject overlap between splits for valid evaluation.
Dataset Creation
Curation Rationale
The ARC dataset was created to address the lack of large-scale, publicly available neuroimaging data for aphasia research. It enables:
- Development of automated lesion segmentation algorithms
- Machine learning models for aphasia severity prediction
- Studies of brain plasticity and language recovery
Source Data
Initial Data Collection
Data was collected at the University of South Carolina and Medical University of South Carolina as part of ongoing aphasia recovery research. All participants provided informed consent under IRB-approved protocols.
Who are the source language producers?
N/A - This is a neuroimaging dataset, not a language dataset.
Annotations
Annotation Process
Lesion masks were manually traced by trained neuroimaging experts on T1-weighted or FLAIR images, following established stroke lesion delineation protocols.
Who are the annotators?
Trained neuroimaging researchers at academic medical centers with expertise in stroke neuroanatomy.
Personal and Sensitive Information
- De-identified: All data has been de-identified per HIPAA guidelines
- Defaced: Structural MRI images have been defaced to prevent facial reconstruction
- No PHI: No protected health information is included
- Consent: All participants consented to public data sharing
Considerations for Using the Data
Social Impact
This dataset enables research into:
- Improved stroke rehabilitation through better outcome prediction
- Automated clinical tools for aphasia assessment
- Understanding of brain-language relationships
Discussion of Biases
- Geographic bias: Data collected primarily from Southeastern US medical centers
- Age bias: Stroke predominantly affects older adults; pediatric cases underrepresented
- Severity bias: Very severe aphasia cases may be underrepresented due to consent requirements
Other Known Limitations
- Not all sessions have all modalities (check for
None/empty lists) - Lesion masks available for 228/230 subjects
- Longitudinal follow-up varies by subject (1-12 sessions)
Usage
Loading the Dataset
from datasets import load_dataset
# Load full dataset
ds = load_dataset("hugging-science/arc-aphasia-bids")
# Access a session
session = ds["train"][0]
print(f"Subject: {session['subject_id']}, Session: {session['session_id']}")
# Access structural imaging
if session["t1w"] is not None:
t1_data = session["t1w"].get_fdata()
print(f"T1w shape: {t1_data.shape}")
# Access multi-run functional data
for i, bold_run in enumerate(session["bold"]):
print(f"BOLD run {i+1}: shape={bold_run.shape}")
Filtering by Modality
# Get only sessions with lesion masks
sessions_with_lesions = ds["train"].filter(lambda x: x["lesion"] is not None)
# Get sessions with BOLD fMRI
sessions_with_bold = ds["train"].filter(lambda x: len(x["bold"]) > 0)
Clinical Metadata Analysis
import pandas as pd
# Extract clinical metadata
df = ds["train"].to_pandas()[["subject_id", "session_id", "age_at_stroke", "sex", "wab_aq", "wab_type"]]
print(df.describe())
Additional Information
Dataset Curators
- Original Dataset: Gibson et al. (University of South Carolina)
- HuggingFace Conversion: The-Obstacle-Is-The-Way
Licensing Information
This dataset is released under CC0 1.0 Universal (Public Domain). You can copy, modify, distribute, and perform the work, even for commercial purposes, all without asking permission.
Citation Information
@article{gibson2024arc,
title={A large-scale longitudinal multimodal neuroimaging dataset for aphasia},
author={Gibson, M. and others},
journal={Scientific Data},
volume={11},
year={2024},
publisher={Nature Publishing Group},
doi={10.1038/s41597-024-03819-7}
}
Contributions
Thanks to @The-Obstacle-Is-The-Way for converting this dataset to HuggingFace format with native Nifti() feature support.
Technical Notes
Multi-Run Support
Functional and diffusion modalities (bold, dwi, sbref) support multiple runs per session. These are stored as lists:
- Empty list
[]= no data for this session - List with items = all runs for this session, sorted by filename
Memory Considerations
NIfTI files are loaded on-demand. For large-scale processing, consider:
# Stream without loading all into memory
for session in ds["train"]:
process(session)
# Data is garbage collected after each iteration
Original BIDS Source
This dataset is derived from OpenNeuro ds004884. The original BIDS structure is preserved in the column naming and organization.
- Downloads last month
- 283