|
|
--- |
|
|
license: mit |
|
|
viewer: false |
|
|
task_categories: |
|
|
- zero-shot-classification |
|
|
- text-classification |
|
|
tags: |
|
|
- uv-script |
|
|
- classification |
|
|
- structured-outputs |
|
|
- zero-shot |
|
|
--- |
|
|
# Hugging Face Dataset Classification With Sieves |
|
|
|
|
|
GPU-accelerated text classification for Hugging Face datasets with guaranteed valid outputs through structured |
|
|
generation with [Sieves](https://github.com/MantisAI/sieves/), [Outlines](https://github.com/dottxt-ai/outlines) and |
|
|
Hugging Face zero-shot pipelines. |
|
|
|
|
|
This is a modified version of https://huggingface.co/datasets/uv-scripts/classification. |
|
|
|
|
|
## π Quick Start |
|
|
|
|
|
```bash |
|
|
# Classify IMDB reviews |
|
|
uv run classify-dataset.py classify \ |
|
|
--input-dataset stanfordnlp/imdb \ |
|
|
--column text \ |
|
|
--labels "positive,negative" \ |
|
|
--model HuggingFaceTB/SmolLM-360M-Instruct \ |
|
|
--output-dataset user/imdb-classified |
|
|
``` |
|
|
|
|
|
That's it! No installation, no setup - just `uv run`. |
|
|
|
|
|
## π Requirements |
|
|
|
|
|
- **GPU Recommended**: Uses GPU-accelerated inference (CPU fallback available but slow) |
|
|
- Python 3.12+ |
|
|
- UV (will handle all dependencies automatically) |
|
|
|
|
|
**Python Package Dependencies** (automatically installed via UV): |
|
|
- `sieves` with engines support (>= 0.17.4) |
|
|
- `typer` (>= 0.12) |
|
|
- `datasets` |
|
|
- `huggingface-hub` |
|
|
|
|
|
## π― Features |
|
|
|
|
|
- **Guaranteed valid outputs** using structured generation with Outlines guided decoding |
|
|
- **Zero-shot classification** without training data required |
|
|
- **GPU-optimized** for maximum throughput and efficiency |
|
|
- **Multi-label support** for documents with multiple applicable labels |
|
|
- **Flexible model selection** - works with any instruction-tuned transformer model |
|
|
- **Robust text handling** with preprocessing and validation |
|
|
- **Automatic progress tracking** and detailed statistics |
|
|
- **Direct Hub integration** - read and write datasets seamlessly |
|
|
- **Label descriptions** support for providing context to improve accuracy |
|
|
- **Optimized batching** with Sieves' automatic batch processing |
|
|
- **Multiple guided backends** - supports `outlines` to handle any general language model on Hugging Face, and fast Hugging Face zero-shot classification pipelines |
|
|
|
|
|
## π» Usage |
|
|
|
|
|
### Basic Classification |
|
|
|
|
|
```bash |
|
|
uv run classify-dataset.py classify \ |
|
|
--input-dataset <dataset-id> \ |
|
|
--column <text-column> \ |
|
|
--labels <comma-separated-labels> \ |
|
|
--model <model-id> \ |
|
|
--output-dataset <output-id> |
|
|
``` |
|
|
|
|
|
### Arguments |
|
|
|
|
|
**Required:** |
|
|
|
|
|
- `--input-dataset`: Hugging Face dataset ID (e.g., `stanfordnlp/imdb`, `user/my-dataset`) |
|
|
- `--column`: Name of the text column to classify |
|
|
- `--labels`: Comma-separated classification labels (e.g., `"spam,ham"`) |
|
|
- `--model`: Model to use (e.g., `HuggingFaceTB/SmolLM-360M-Instruct`) |
|
|
- `--output-dataset`: Where to save the classified dataset |
|
|
|
|
|
**Optional:** |
|
|
|
|
|
- `--label-descriptions`: Provide descriptions for each label to improve classification accuracy |
|
|
- `--multi-label`: Enable multi-label classification mode (creates multi-hot encoded labels) |
|
|
- `--split`: Dataset split to process (default: `train`) |
|
|
- `--max-samples`: Limit samples for testing |
|
|
- `--shuffle`: Shuffle dataset before selecting samples (useful for random sampling) |
|
|
- `--shuffle-seed`: Random seed for shuffling |
|
|
- `--batch-size`: Batch size for inference (default: 64) |
|
|
- `--max-tokens`: Maximum tokens to generate per sample (default: 200) |
|
|
- `--hf-token`: Hugging Face token (or use `HF_TOKEN` env var) |
|
|
|
|
|
### Label Descriptions |
|
|
|
|
|
Provide context for your labels to improve classification accuracy: |
|
|
|
|
|
```bash |
|
|
uv run classify-dataset.py classify \ |
|
|
--input-dataset user/support-tickets \ |
|
|
--column content \ |
|
|
--labels "bug,feature,question,other" \ |
|
|
--label-descriptions "bug:something is broken,feature:request for new functionality,question:asking for help,other:anything else" \ |
|
|
--model HuggingFaceTB/SmolLM-360M-Instruct \ |
|
|
--output-dataset user/tickets-classified |
|
|
``` |
|
|
|
|
|
The model uses these descriptions to better understand what each label represents, leading to more accurate classifications. |
|
|
|
|
|
### Multi-Label Classification |
|
|
|
|
|
Enable multi-label mode for documents that can have multiple applicable labels: |
|
|
|
|
|
```bash |
|
|
uv run classify-dataset.py classify \ |
|
|
--input-dataset ag_news \ |
|
|
--column text \ |
|
|
--labels "world,sports,business,science" \ |
|
|
--multi-label \ |
|
|
--model HuggingFaceTB/SmolLM-360M-Instruct \ |
|
|
--output-dataset user/ag-news-multilabel |
|
|
``` |
|
|
|
|
|
## π Examples |
|
|
|
|
|
### Sentiment Analysis |
|
|
|
|
|
```bash |
|
|
uv run classify-dataset.py classify \ |
|
|
--input-dataset stanfordnlp/imdb \ |
|
|
--column text \ |
|
|
--labels "positive,ambivalent,negative" \ |
|
|
--model HuggingFaceTB/SmolLM-360M-Instruct \ |
|
|
--output-dataset user/imdb-sentiment |
|
|
``` |
|
|
|
|
|
### Support Ticket Classification |
|
|
|
|
|
```bash |
|
|
uv run classify-dataset.py classify \ |
|
|
--input-dataset user/support-tickets \ |
|
|
--column content \ |
|
|
--labels "bug,feature_request,question,other" \ |
|
|
--label-descriptions "bug:code or product not working as expected,feature_request:asking for new functionality,question:seeking help or clarification,other:general comments or feedback" \ |
|
|
--model HuggingFaceTB/SmolLM-360M-Instruct \ |
|
|
--output-dataset user/tickets-classified |
|
|
``` |
|
|
|
|
|
### News Categorization |
|
|
|
|
|
```bash |
|
|
uv run classify-dataset.py classify \ |
|
|
--input-dataset ag_news \ |
|
|
--column text \ |
|
|
--labels "world,sports,business,tech" \ |
|
|
--model HuggingFaceTB/SmolLM-1.7B-Instruct \ |
|
|
--output-dataset user/ag-news-categorized |
|
|
``` |
|
|
|
|
|
### Multi-Label News Classification |
|
|
|
|
|
```bash |
|
|
uv run classify-dataset.py classify \ |
|
|
--input-dataset ag_news \ |
|
|
--column text \ |
|
|
--labels "world,sports,business,tech" \ |
|
|
--multi-label \ |
|
|
--label-descriptions "world:global and international events,sports:sports and athletics,business:business and finance,tech:technology and innovation" \ |
|
|
--model HuggingFaceTB/SmolLM-1.7B-Instruct \ |
|
|
--output-dataset user/ag-news-multilabel |
|
|
``` |
|
|
|
|
|
This combines label descriptions with multi-label mode for comprehensive categorization of news articles. |
|
|
|
|
|
### ArXiv ML Research Classification |
|
|
|
|
|
Classify academic papers into machine learning research areas: |
|
|
|
|
|
```bash |
|
|
# Fast classification with random sampling |
|
|
uv run classify-dataset.py classify \ |
|
|
--input-dataset librarian-bots/arxiv-metadata-snapshot \ |
|
|
--column abstract \ |
|
|
--labels "llm,computer_vision,reinforcement_learning,optimization,theory,other" \ |
|
|
--label-descriptions "llm:language models and NLP,computer_vision:image and video processing,reinforcement_learning:RL and decision making,optimization:training and efficiency,theory:theoretical ML foundations,other:other ML topics" \ |
|
|
--model HuggingFaceTB/SmolLM-360M-Instruct \ |
|
|
--output-dataset user/arxiv-ml-classified \ |
|
|
--split "train" \ |
|
|
--max-samples 100 \ |
|
|
--shuffle |
|
|
|
|
|
# Multi-label for nuanced classification |
|
|
uv run classify-dataset.py classify \ |
|
|
--input-dataset librarian-bots/arxiv-metadata-snapshot \ |
|
|
--column abstract \ |
|
|
--labels "multimodal,agents,reasoning,safety,efficiency" \ |
|
|
--label-descriptions "multimodal:vision-language and cross-modal models,agents:autonomous agents and tool use,reasoning:reasoning and planning systems,safety:alignment and safety research,efficiency:model optimization and deployment" \ |
|
|
--multi-label \ |
|
|
--model HuggingFaceTB/SmolLM-360M-Instruct \ |
|
|
--output-dataset user/arxiv-frontier-research \ |
|
|
--split "train[:1000]" \ |
|
|
--max-samples 50 |
|
|
``` |
|
|
|
|
|
Multi-label mode is particularly valuable for academic abstracts where papers often span multiple topics and require careful analysis to determine all relevant research areas. |
|
|
|
|
|
## π Running Locally vs Cloud |
|
|
|
|
|
This script is optimized to run locally on GPU-equipped machines: |
|
|
|
|
|
```bash |
|
|
# Local execution with your GPU |
|
|
uv run classify-dataset.py classify \ |
|
|
--input-dataset stanfordnlp/imdb \ |
|
|
--column text \ |
|
|
--labels "positive,negative" \ |
|
|
--model HuggingFaceTB/SmolLM-360M-Instruct \ |
|
|
--output-dataset user/imdb-classified |
|
|
``` |
|
|
|
|
|
For cloud deployment, you can use Hugging Face Spaces or other GPU services by adapting the command to your environment. |
|
|
|
|
|
## π§ Advanced Usage |
|
|
|
|
|
### Random Sampling |
|
|
|
|
|
When working with ordered datasets, use `--shuffle` with `--max-samples` to get a representative sample: |
|
|
|
|
|
```bash |
|
|
# Get 50 random reviews instead of the first 50 |
|
|
uv run classify-dataset.py classify \ |
|
|
--input-dataset stanfordnlp/imdb \ |
|
|
--column text \ |
|
|
--labels "positive,negative" \ |
|
|
--model HuggingFaceTB/SmolLM-360M-Instruct \ |
|
|
--output-dataset user/imdb-sample \ |
|
|
--max-samples 50 \ |
|
|
--shuffle \ |
|
|
--shuffle-seed 123 # For reproducibility |
|
|
``` |
|
|
|
|
|
|
|
|
### Using Different Models |
|
|
|
|
|
By default, this script works with any instruction-tuned model. Here are some recommended options: |
|
|
|
|
|
```bash |
|
|
# Lightweight model for fast classification |
|
|
uv run classify-dataset.py classify \ |
|
|
--input-dataset user/my-dataset \ |
|
|
--column text \ |
|
|
--labels "A,B,C" \ |
|
|
--model HuggingFaceTB/SmolLM-360M-Instruct \ |
|
|
--output-dataset user/classified |
|
|
|
|
|
# Larger model for complex classification |
|
|
uv run classify-dataset.py classify \ |
|
|
--input-dataset user/legal-docs \ |
|
|
--column text \ |
|
|
--labels "contract,patent,brief,memo,other" \ |
|
|
--model HuggingFaceTB/SmolLM3-3B-Instruct \ |
|
|
--output-dataset user/legal-classified |
|
|
|
|
|
# Specialized zero-shot classifier |
|
|
uv run classify-dataset.py classify \ |
|
|
--input-dataset user/my-dataset \ |
|
|
--column text \ |
|
|
--labels "A,B,C" \ |
|
|
--model MoritzLaurer/deberta-v3-large-zeroshot-v2.0 \ |
|
|
--output-dataset user/classified |
|
|
``` |
|
|
|
|
|
### Large Datasets |
|
|
|
|
|
Configure `--batch-size` for more effective batch processing with large datasets: |
|
|
|
|
|
```bash |
|
|
uv run classify-dataset.py classify \ |
|
|
--input-dataset user/huge-dataset \ |
|
|
--column text \ |
|
|
--labels "A,B,C" \ |
|
|
--model HuggingFaceTB/SmolLM-360M-Instruct \ |
|
|
--output-dataset user/huge-classified \ |
|
|
--batch-size 128 |
|
|
``` |
|
|
|
|
|
|
|
|
## π€ How It Works |
|
|
|
|
|
1. **Sieves**: Provides a zero-shot task pipeline system for structured NLP workflows |
|
|
2. **Outlines**: Provides guided decoding to guarantee valid label outputs |
|
|
3. **UV**: Handles all dependencies automatically |
|
|
|
|
|
The script loads your dataset, preprocesses texts, classifies each one with guaranteed valid outputs using Sieves' |
|
|
`Classification` task, then saves the results as a new column in the output dataset. |
|
|
|
|
|
## π Troubleshooting |
|
|
|
|
|
### GPU Not Available |
|
|
|
|
|
This script works best with a GPU but can run on CPU (much slower). To use GPU: |
|
|
|
|
|
- Run on a machine with NVIDIA GPU |
|
|
- Use cloud GPU instances (AWS, GCP, Azure, etc.) |
|
|
- Use Hugging Face Spaces with GPU |
|
|
|
|
|
### Out of Memory |
|
|
|
|
|
- Use a smaller model (e.g., SmolLM-360M instead of 3B) |
|
|
- Reduce `--batch-size` (try 32, 16, or 8) |
|
|
- Reduce `--max-tokens` for shorter generations |
|
|
|
|
|
### Invalid/Skipped Texts |
|
|
|
|
|
- Texts shorter than 3 characters are skipped |
|
|
- Empty or None values are marked as invalid |
|
|
- Very long texts are truncated to 4000 characters |
|
|
|
|
|
### Classification Quality |
|
|
|
|
|
- With Outlines guided decoding, outputs are guaranteed to be valid labels |
|
|
- For better results, use clear and distinct label names |
|
|
- Try `--label-descriptions` to provide context |
|
|
- Use a larger model for nuanced tasks |
|
|
- In multi-label mode, adjust the confidence threshold (defaults to 0.5) |
|
|
|
|
|
### Authentication Issues |
|
|
|
|
|
If you see authentication errors: |
|
|
|
|
|
- Run `huggingface-cli login` to cache your token |
|
|
- Or set `export HF_TOKEN=your_token_here` |
|
|
- Verify your token has read/write permissions on the Hub |
|
|
|
|
|
## π¬ Advanced Workflows |
|
|
|
|
|
### Full Pipeline Workflow |
|
|
|
|
|
Start with small tests, then run on the full dataset: |
|
|
|
|
|
```bash |
|
|
# Step 1: Test with small sample |
|
|
uv run classify-dataset.py classify \ |
|
|
--input-dataset your-dataset \ |
|
|
--column text \ |
|
|
--labels "label1,label2,label3" \ |
|
|
--model HuggingFaceTB/SmolLM-360M-Instruct \ |
|
|
--output-dataset user/test-classification \ |
|
|
--max-samples 100 |
|
|
|
|
|
# Step 2: If results look good, run on full dataset |
|
|
uv run classify-dataset.py classify \ |
|
|
--input-dataset your-dataset \ |
|
|
--column text \ |
|
|
--labels "label1,label2,label3" \ |
|
|
--label-descriptions "label1:description,label2:description,label3:description" \ |
|
|
--model HuggingFaceTB/SmolLM-360M-Instruct \ |
|
|
--output-dataset user/final-classification \ |
|
|
--batch-size 64 |
|
|
``` |
|
|
|
|
|
## π License |
|
|
|
|
|
This example is provided as part of the [Sieves](https://github.com/MantisAI/sieves/) project. |