name
string
module
string
type
string
_private.Mathlib.Combinatorics.SimpleGraph.Triangle.Removal.0.Mathlib.Meta.Positivity.evalTriangleRemovalBound.match_4
Mathlib.Combinatorics.SimpleGraph.Triangle.Removal
(α : Q(Type)) → (_zα : Q(Zero «$α»)) → (_pα : Q(PartialOrder «$α»)) → (ε : Q(ℝ)) → (motive : Mathlib.Meta.Positivity.Strictness q(inferInstance) q(inferInstance) ε → Sort u_1) → (__discr : Mathlib.Meta.Positivity.Strictness q(inferInstance) q(inferInstance) ε) → ((hε : Q(0 < «$ε»)) → motive (Mathlib.Meta.Positivity.Strictness.positive hε)) → ((x : Mathlib.Meta.Positivity.Strictness q(inferInstance) q(inferInstance) ε) → motive x) → motive __discr
Lean.Compiler.LCNF.instTraverseFVarArg
Lean.Compiler.LCNF.FVarUtil
Lean.Compiler.LCNF.TraverseFVar Lean.Compiler.LCNF.Arg
Nat.mem_divisors_self
Mathlib.NumberTheory.Divisors
∀ (n : ℕ), n ≠ 0 → n ∈ n.divisors
CategoryTheory.Preadditive.toCommGrp._proof_3
Mathlib.CategoryTheory.Preadditive.CommGrp_
∀ (C : Type u_2) [inst : CategoryTheory.Category.{u_1, u_2} C] [inst_1 : CategoryTheory.Preadditive C] [inst_2 : CategoryTheory.CartesianMonoidalCategory C] (X : C), CategoryTheory.CategoryStruct.comp 0 (CategoryTheory.CategoryStruct.id X) = 0
AlgebraicGeometry.Scheme.Cover.Over
Mathlib.AlgebraicGeometry.Cover.Over
(S : AlgebraicGeometry.Scheme) → {P : CategoryTheory.MorphismProperty AlgebraicGeometry.Scheme} → [P.IsStableUnderBaseChange] → [AlgebraicGeometry.Scheme.IsJointlySurjectivePreserving P] → {X : AlgebraicGeometry.Scheme} → [X.Over S] → AlgebraicGeometry.Scheme.Cover (AlgebraicGeometry.Scheme.precoverage P) X → Type (max u u_1)
Ordering.swap.eq_3
Std.Data.DTreeMap.Internal.Model
Ordering.gt.swap = Ordering.lt
ValuativeRel.ValueGroupWithZero.exact
Mathlib.RingTheory.Valuation.ValuativeRel.Basic
∀ {R : Type u_1} [inst : CommRing R] [inst_1 : ValuativeRel R] {x y : R} {t s : ↥(ValuativeRel.posSubmonoid R)}, ValuativeRel.ValueGroupWithZero.mk x t = ValuativeRel.ValueGroupWithZero.mk y s → x * ↑s ≤ᵥ y * ↑t ∧ y * ↑t ≤ᵥ x * ↑s