SentenceTransformer based on sentence-transformers/all-mpnet-base-v2
This is a sentence-transformers model finetuned from sentence-transformers/all-mpnet-base-v2. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: sentence-transformers/all-mpnet-base-v2
- Maximum Sequence Length: 384 tokens
- Output Dimensionality: 768 dimensions
- Similarity Function: Cosine Similarity
Model Sources
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 384, 'do_lower_case': False}) with Transformer model: MPNetModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
model = SentenceTransformer("sentence_transformers_model_id")
sentences = [
'I am not good at expressing my true feelings by the way I talk and look.',
'Felt nervous or anxious?',
'Experienced sleep disturbances?',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
Evaluation
Metrics
Semantic Similarity
| Metric |
Value |
| pearson_cosine |
0.568 |
| spearman_cosine |
0.5533 |
Training Details
Training Dataset
Unnamed Dataset
Evaluation Dataset
Unnamed Dataset
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy: steps
per_device_train_batch_size: 16
All Hyperparameters
Click to expand
overwrite_output_dir: False
do_predict: False
eval_strategy: steps
prediction_loss_only: True
per_device_train_batch_size: 16
per_device_eval_batch_size: 8
per_gpu_train_batch_size: None
per_gpu_eval_batch_size: None
gradient_accumulation_steps: 1
eval_accumulation_steps: None
torch_empty_cache_steps: None
learning_rate: 5e-05
weight_decay: 0.0
adam_beta1: 0.9
adam_beta2: 0.999
adam_epsilon: 1e-08
max_grad_norm: 1.0
num_train_epochs: 3
max_steps: -1
lr_scheduler_type: linear
lr_scheduler_kwargs: {}
warmup_ratio: 0.0
warmup_steps: 0
log_level: passive
log_level_replica: warning
log_on_each_node: True
logging_nan_inf_filter: True
save_safetensors: True
save_on_each_node: False
save_only_model: False
restore_callback_states_from_checkpoint: False
no_cuda: False
use_cpu: False
use_mps_device: False
seed: 42
data_seed: None
jit_mode_eval: False
use_ipex: False
bf16: False
fp16: False
fp16_opt_level: O1
half_precision_backend: auto
bf16_full_eval: False
fp16_full_eval: False
tf32: None
local_rank: 0
ddp_backend: None
tpu_num_cores: None
tpu_metrics_debug: False
debug: []
dataloader_drop_last: False
dataloader_num_workers: 0
dataloader_prefetch_factor: None
past_index: -1
disable_tqdm: False
remove_unused_columns: True
label_names: None
load_best_model_at_end: False
ignore_data_skip: False
fsdp: []
fsdp_min_num_params: 0
fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
fsdp_transformer_layer_cls_to_wrap: None
accelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
deepspeed: None
label_smoothing_factor: 0.0
optim: adamw_torch
optim_args: None
adafactor: False
group_by_length: False
length_column_name: length
ddp_find_unused_parameters: None
ddp_bucket_cap_mb: None
ddp_broadcast_buffers: False
dataloader_pin_memory: True
dataloader_persistent_workers: False
skip_memory_metrics: True
use_legacy_prediction_loop: False
push_to_hub: False
resume_from_checkpoint: None
hub_model_id: None
hub_strategy: every_save
hub_private_repo: None
hub_always_push: False
gradient_checkpointing: False
gradient_checkpointing_kwargs: None
include_inputs_for_metrics: False
include_for_metrics: []
eval_do_concat_batches: True
fp16_backend: auto
push_to_hub_model_id: None
push_to_hub_organization: None
mp_parameters:
auto_find_batch_size: False
full_determinism: False
torchdynamo: None
ray_scope: last
ddp_timeout: 1800
torch_compile: False
torch_compile_backend: None
torch_compile_mode: None
dispatch_batches: None
split_batches: None
include_tokens_per_second: False
include_num_input_tokens_seen: False
neftune_noise_alpha: None
optim_target_modules: None
batch_eval_metrics: False
eval_on_start: False
use_liger_kernel: False
eval_use_gather_object: False
average_tokens_across_devices: False
prompts: None
batch_sampler: batch_sampler
multi_dataset_batch_sampler: proportional
Training Logs
| Epoch |
Step |
Training Loss |
Validation Loss |
spearman_cosine |
| 0.0680 |
10 |
0.2239 |
- |
- |
| 0.1361 |
20 |
0.2188 |
- |
- |
| 0.2041 |
30 |
0.2007 |
- |
- |
| 0.2721 |
40 |
0.2045 |
- |
- |
| 0.3401 |
50 |
0.2179 |
0.2197 |
- |
| 0.4082 |
60 |
0.2106 |
- |
- |
| 0.4762 |
70 |
0.2124 |
- |
- |
| 0.5442 |
80 |
0.2046 |
- |
- |
| 0.6122 |
90 |
0.2069 |
- |
- |
| 0.6803 |
100 |
0.1965 |
0.2112 |
- |
| 0.7483 |
110 |
0.2355 |
- |
- |
| 0.8163 |
120 |
0.2012 |
- |
- |
| 0.8844 |
130 |
0.2402 |
- |
- |
| 0.9524 |
140 |
0.2173 |
- |
- |
| 1.0204 |
150 |
0.1763 |
0.2043 |
- |
| 1.0884 |
160 |
0.1862 |
- |
- |
| 1.1565 |
170 |
0.1854 |
- |
- |
| 1.2245 |
180 |
0.193 |
- |
- |
| 1.2925 |
190 |
0.1852 |
- |
- |
| 1.3605 |
200 |
0.1908 |
0.1950 |
- |
| 1.4286 |
210 |
0.2002 |
- |
- |
| 1.4966 |
220 |
0.1945 |
- |
- |
| 1.5646 |
230 |
0.193 |
- |
- |
| 1.6327 |
240 |
0.1893 |
- |
- |
| 1.7007 |
250 |
0.171 |
0.1937 |
- |
| 1.7687 |
260 |
0.1848 |
- |
- |
| 1.8367 |
270 |
0.1909 |
- |
- |
| 1.9048 |
280 |
0.2138 |
- |
- |
| 1.9728 |
290 |
0.2014 |
- |
- |
| 2.0408 |
300 |
0.1855 |
0.1867 |
- |
| 2.1088 |
310 |
0.1891 |
- |
- |
| 2.1769 |
320 |
0.1849 |
- |
- |
| 2.2449 |
330 |
0.1741 |
- |
- |
| 2.3129 |
340 |
0.1775 |
- |
- |
| 2.3810 |
350 |
0.178 |
0.1871 |
- |
| 2.4490 |
360 |
0.1778 |
- |
- |
| 2.5170 |
370 |
0.174 |
- |
- |
| 2.5850 |
380 |
0.1654 |
- |
- |
| 2.6531 |
390 |
0.1954 |
- |
- |
| 2.7211 |
400 |
0.1584 |
0.1860 |
- |
| 2.7891 |
410 |
0.2019 |
- |
- |
| 2.8571 |
420 |
0.1941 |
- |
- |
| 2.9252 |
430 |
0.1855 |
- |
- |
| 2.9932 |
440 |
0.1823 |
- |
- |
| 3.0 |
441 |
- |
- |
0.5533 |
Framework Versions
- Python: 3.10.12
- Sentence Transformers: 3.3.1
- Transformers: 4.47.1
- PyTorch: 2.5.1+cu121
- Accelerate: 1.2.1
- Datasets: 3.2.0
- Tokenizers: 0.21.0
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}