SentenceTransformer based on BAAI/bge-small-en-v1.5
This is a sentence-transformers model finetuned from BAAI/bge-small-en-v1.5. It maps sentences & paragraphs to a 384-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: BAAI/bge-small-en-v1.5
- Maximum Sequence Length: 512 tokens
- Output Dimensionality: 384 dimensions
- Similarity Function: Cosine Similarity
Model Sources
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': True}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
model = SentenceTransformer("himanshu23099/bge_embedding_finetune_v2")
sentences = [
'Tourists visit reason',
'What is All Saints Cathedral, and why is it architecturally significant?\nAll Saints Cathedral, locally known as Patthar Girja (Stone Church), is a renowned Anglican Christian Church located on M.G. Marg, Allahabad. Built in the late 19th century, it is one of the most beautiful and architecturally significant churches in Uttar Pradesh, attracting both tourists and pilgrims.',
"What attractions are closest to the city center?\nNear the city center, you’ll find several attractions within a short distance. Anand Bhavan and Swaraj Bhavan are centrally located and offer insights into the Nehru family and India’s freedom movement. All Saints’ Cathedral, a magnificent Gothic-style church also known as the “Patthar Girja,” is located in Civil Lines and is one of Prayagraj's architectural gems. Company Bagh, a peaceful park, is also close by and ideal for a quiet stroll. Chandrashekhar Azad Park and Khusro Bagh are both centrally located as well, providing green spaces along with historical importance.",
]
embeddings = model.encode(sentences)
print(embeddings.shape)
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
Evaluation
Metrics
Information Retrieval
| Metric |
Value |
| cosine_accuracy@1 |
0.358 |
| cosine_accuracy@5 |
0.7092 |
| cosine_accuracy@10 |
0.7993 |
| cosine_precision@1 |
0.358 |
| cosine_precision@5 |
0.1418 |
| cosine_precision@10 |
0.0799 |
| cosine_recall@1 |
0.358 |
| cosine_recall@5 |
0.7092 |
| cosine_recall@10 |
0.7993 |
| cosine_ndcg@5 |
0.5539 |
| cosine_ndcg@10 |
0.5832 |
| cosine_ndcg@100 |
0.619 |
| cosine_mrr@5 |
0.5013 |
| cosine_mrr@10 |
0.5136 |
| cosine_mrr@100 |
0.521 |
| cosine_map@100 |
0.521 |
Training Details
Training Dataset
Unnamed Dataset
- Size: 3,507 training samples
- Columns:
anchor, positive, and negative
- Approximate statistics based on the first 1000 samples:
|
anchor |
positive |
negative |
| type |
string |
string |
string |
| details |
- min: 4 tokens
- mean: 11.76 tokens
- max: 32 tokens
|
- min: 8 tokens
- mean: 116.82 tokens
- max: 504 tokens
|
- min: 19 tokens
- mean: 121.15 tokens
- max: 424 tokens
|
- Samples:
| anchor |
positive |
negative |
Where are the shuttle bus pickup points located within the Kumbh Mela grounds? |
No, shuttle buses will not have dedicated volunteers specifically, but for assistance, you can reach out to the nearest information center. |
The ancient art of weaving has captivated many cultures worldwide. In some regions, artisans use intricate patterns to tell stories, while others focus on vibrant colors that highlight their heritage. Experimentation with different materials can yield unique textures, adding depth to the final product. Workshops often provide insights into traditional techniques, ensuring these skills are passed down through generations. |
Hotel Ilawart start place |
Is hotel pickup and drop-off available for the tours? Fixed pickup points, such as Hotel Ilawart, are provided for all tours. In some cases, pickup and drop-off can be arranged for locations within a 5 km radius of the starting point, but you must confirm this with the tour operator at the time of booking. |
What all is included in the trip package? The trip package typically includes transportation, tour guide services, and breakfast. Meals such as lunch and dinner can be purchased separately. Hotel bookings are usually not included in the package, so you will need to arrange accommodation independently. |
Are there food stalls or restaurants at the Railway Junction that cater to dietary restrictions for pilgrims? |
Yes, there are food stalls and restaurants available at the Railway Junction that cater to various dietary needs, including vegetarian and other dietary restrictions suitable for pilgrims. |
The sound of the ocean waves rhythmically crashing against the shore creates a soothing symphony that invites relaxation. Seagulls soar above, occasionally diving down to catch a glimpse of fish beneath the surface. Beachgoers spread out their colorful towels, soaking up the sun's golden rays while children build sandcastles, their laughter mingling with the salty breeze. A distant sailboat glides across the horizon, hinting at adventures beyond the vast expanse of blue. As the sun sets, the sky transforms into a canvas of vibrant hues, signaling the end of another beautiful day by the sea. |
- Loss:
GISTEmbedLoss with these parameters:{'guide': SentenceTransformer(
(0): Transformer({'max_seq_length': 256, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
), 'temperature': 0.01}
Evaluation Dataset
Unnamed Dataset
- Size: 877 evaluation samples
- Columns:
anchor, positive, and negative
- Approximate statistics based on the first 877 samples:
|
anchor |
positive |
negative |
| type |
string |
string |
string |
| details |
- min: 5 tokens
- mean: 12.21 tokens
- max: 32 tokens
|
- min: 3 tokens
- mean: 115.93 tokens
- max: 471 tokens
|
- min: 15 tokens
- mean: 118.09 tokens
- max: 422 tokens
|
- Samples:
| anchor |
positive |
negative |
Ganga bath benefit |
What is the ritual of Snan or bathing? Taking bath at the confluence of Ganga, Yamuna and invisible Saraswati during Mahakumbh has special significance. It is believed that by bathing in this holy confluence, all the sins of a person are washed away and he attains salvation. Bathing not only symbolizes personal purification, but it also conveys the message of social harmony and unity, where people from different cultures and communities come together to participate in this sacred ritual. It is considered that in special circumstances, the water of rivers also acquires a special life-giving quality, i.e. nectar, which not only leads to spiritual development along with purification of the mind, but also gives physical benefits by getting health. List of Aliases: [['Snan', 'bathing'], ] |
What benefits will I get by attending the Kumbh Mela? It is believed that bathing in the holy rivers during this time washes away sins and grants liberation from the cycle of life and death. Attending the Kumbh and taking a dip in the sacred rivers provides a unique opportunity for spiritual growth, purification, and selfrealization. ✨ |
Guide provide what |
What is the guide-to-participant ratio for each tour? Each tour is led by one guide per group, ensuring a personalized experience with ample opportunity for detailed insights and engagement. The guide will provide context, historical background, and answer any questions during the tour, offering a rich, informative experience for participants. |
How many people can join a group tour? Group sizes depend on the type of vehicle selected. For instance, a Dzire accommodates up to 4 people, an Innova is suitable for 5-6 people, and larger groups (minimum 10 people) can travel in a Tempo Traveller. For even larger groups, multiple vehicles can be arranged to ensure everyone can travel together comfortably. |
How many rules must a Kalpvasi observe? |
A Kalpvasi must observe 21 rules during Kalpvas, involving disciplines of the mind, speech, and actions. |
The dancing colors of autumn leaves create a tapestry of nature’s beauty, inviting every eye to witness the grandeur of the changing seasons. Every gust of wind carries a whisper of nostalgia as trees shed their vibrant garments. |
- Loss:
GISTEmbedLoss with these parameters:{'guide': SentenceTransformer(
(0): Transformer({'max_seq_length': 256, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
), 'temperature': 0.01}
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy: steps
per_device_train_batch_size: 16
gradient_accumulation_steps: 2
learning_rate: 1e-05
weight_decay: 0.01
num_train_epochs: 30
warmup_ratio: 0.1
load_best_model_at_end: True
All Hyperparameters
Click to expand
overwrite_output_dir: False
do_predict: False
eval_strategy: steps
prediction_loss_only: True
per_device_train_batch_size: 16
per_device_eval_batch_size: 8
per_gpu_train_batch_size: None
per_gpu_eval_batch_size: None
gradient_accumulation_steps: 2
eval_accumulation_steps: None
torch_empty_cache_steps: None
learning_rate: 1e-05
weight_decay: 0.01
adam_beta1: 0.9
adam_beta2: 0.999
adam_epsilon: 1e-08
max_grad_norm: 1.0
num_train_epochs: 30
max_steps: -1
lr_scheduler_type: linear
lr_scheduler_kwargs: {}
warmup_ratio: 0.1
warmup_steps: 0
log_level: passive
log_level_replica: warning
log_on_each_node: True
logging_nan_inf_filter: True
save_safetensors: True
save_on_each_node: False
save_only_model: False
restore_callback_states_from_checkpoint: False
no_cuda: False
use_cpu: False
use_mps_device: False
seed: 42
data_seed: None
jit_mode_eval: False
use_ipex: False
bf16: False
fp16: False
fp16_opt_level: O1
half_precision_backend: auto
bf16_full_eval: False
fp16_full_eval: False
tf32: None
local_rank: 0
ddp_backend: None
tpu_num_cores: None
tpu_metrics_debug: False
debug: []
dataloader_drop_last: False
dataloader_num_workers: 0
dataloader_prefetch_factor: None
past_index: -1
disable_tqdm: False
remove_unused_columns: True
label_names: None
load_best_model_at_end: True
ignore_data_skip: False
fsdp: []
fsdp_min_num_params: 0
fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
fsdp_transformer_layer_cls_to_wrap: None
accelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
deepspeed: None
label_smoothing_factor: 0.0
optim: adamw_torch
optim_args: None
adafactor: False
group_by_length: False
length_column_name: length
ddp_find_unused_parameters: None
ddp_bucket_cap_mb: None
ddp_broadcast_buffers: False
dataloader_pin_memory: True
dataloader_persistent_workers: False
skip_memory_metrics: True
use_legacy_prediction_loop: False
push_to_hub: False
resume_from_checkpoint: None
hub_model_id: None
hub_strategy: every_save
hub_private_repo: False
hub_always_push: False
gradient_checkpointing: False
gradient_checkpointing_kwargs: None
include_inputs_for_metrics: False
include_for_metrics: []
eval_do_concat_batches: True
fp16_backend: auto
push_to_hub_model_id: None
push_to_hub_organization: None
mp_parameters:
auto_find_batch_size: False
full_determinism: False
torchdynamo: None
ray_scope: last
ddp_timeout: 1800
torch_compile: False
torch_compile_backend: None
torch_compile_mode: None
dispatch_batches: None
split_batches: None
include_tokens_per_second: False
include_num_input_tokens_seen: False
neftune_noise_alpha: None
optim_target_modules: None
batch_eval_metrics: False
eval_on_start: False
use_liger_kernel: False
eval_use_gather_object: False
average_tokens_across_devices: False
prompts: None
batch_sampler: batch_sampler
multi_dataset_batch_sampler: proportional
Training Logs
Click to expand
| Epoch |
Step |
Training Loss |
Validation Loss |
val_evaluator_cosine_ndcg@100 |
| 0.0909 |
10 |
- |
1.0916 |
0.4285 |
| 0.1818 |
20 |
- |
1.0683 |
0.4295 |
| 0.2727 |
30 |
- |
1.0320 |
0.4301 |
| 0.3636 |
40 |
- |
0.9845 |
0.4309 |
| 0.4545 |
50 |
1.8466 |
0.9320 |
0.4340 |
| 0.5455 |
60 |
- |
0.8804 |
0.4352 |
| 0.6364 |
70 |
- |
0.8284 |
0.4368 |
| 0.7273 |
80 |
- |
0.7754 |
0.4420 |
| 0.8182 |
90 |
- |
0.7211 |
0.4425 |
| 0.9091 |
100 |
1.4317 |
0.6711 |
0.4442 |
| 1.0 |
110 |
- |
0.6193 |
0.4483 |
| 1.0909 |
120 |
- |
0.5700 |
0.4555 |
| 1.1818 |
130 |
- |
0.5271 |
0.4603 |
| 1.2727 |
140 |
- |
0.4892 |
0.4620 |
| 1.3636 |
150 |
1.0007 |
0.4611 |
0.4651 |
| 1.4545 |
160 |
- |
0.4276 |
0.4706 |
| 1.5455 |
170 |
- |
0.4005 |
0.4698 |
| 1.6364 |
180 |
- |
0.3818 |
0.4728 |
| 1.7273 |
190 |
- |
0.3573 |
0.4763 |
| 1.8182 |
200 |
0.7585 |
0.3321 |
0.4783 |
| 1.9091 |
210 |
- |
0.3091 |
0.4806 |
| 2.0 |
220 |
- |
0.2963 |
0.4833 |
| 2.0909 |
230 |
- |
0.2875 |
0.4834 |
| 2.1818 |
240 |
- |
0.2793 |
0.4842 |
| 2.2727 |
250 |
0.5586 |
0.2729 |
0.4879 |
| 2.3636 |
260 |
- |
0.2663 |
0.4885 |
| 2.4545 |
270 |
- |
0.2576 |
0.4925 |
| 2.5455 |
280 |
- |
0.2477 |
0.5006 |
| 2.6364 |
290 |
- |
0.2353 |
0.5058 |
| 2.7273 |
300 |
0.4751 |
0.2278 |
0.5112 |
| 2.8182 |
310 |
- |
0.2206 |
0.5096 |
| 2.9091 |
320 |
- |
0.2130 |
0.5144 |
| 3.0 |
330 |
- |
0.2043 |
0.5202 |
| 3.0909 |
340 |
- |
0.1973 |
0.5214 |
| 3.1818 |
350 |
0.381 |
0.1964 |
0.5271 |
| 3.2727 |
360 |
- |
0.1968 |
0.5325 |
| 3.3636 |
370 |
- |
0.1922 |
0.5289 |
| 3.4545 |
380 |
- |
0.1869 |
0.5329 |
| 3.5455 |
390 |
- |
0.1789 |
0.5391 |
| 3.6364 |
400 |
0.3886 |
0.1743 |
0.5464 |
| 3.7273 |
410 |
- |
0.1730 |
0.5472 |
| 3.8182 |
420 |
- |
0.1699 |
0.5479 |
| 3.9091 |
430 |
- |
0.1644 |
0.5525 |
| 4.0 |
440 |
- |
0.1623 |
0.5511 |
| 4.0909 |
450 |
0.2977 |
0.1600 |
0.5513 |
| 4.1818 |
460 |
- |
0.1540 |
0.5519 |
| 4.2727 |
470 |
- |
0.1492 |
0.5589 |
| 4.3636 |
480 |
- |
0.1450 |
0.5624 |
| 4.4545 |
490 |
- |
0.1426 |
0.5644 |
| 4.5455 |
500 |
0.2496 |
0.1407 |
0.5629 |
| 4.6364 |
510 |
- |
0.1390 |
0.5663 |
| 4.7273 |
520 |
- |
0.1399 |
0.5695 |
| 4.8182 |
530 |
- |
0.1377 |
0.5764 |
| 4.9091 |
540 |
- |
0.1357 |
0.5753 |
| 5.0 |
550 |
0.2322 |
0.1364 |
0.5827 |
| 5.0909 |
560 |
- |
0.1327 |
0.5804 |
| 5.1818 |
570 |
- |
0.1300 |
0.5799 |
| 5.2727 |
580 |
- |
0.1307 |
0.5816 |
| 5.3636 |
590 |
- |
0.1331 |
0.5868 |
| 5.4545 |
600 |
0.2219 |
0.1322 |
0.5839 |
| 5.5455 |
610 |
- |
0.1332 |
0.5822 |
| 5.6364 |
620 |
- |
0.1323 |
0.5817 |
| 5.7273 |
630 |
- |
0.1311 |
0.5845 |
| 5.8182 |
640 |
- |
0.1282 |
0.5834 |
| 5.9091 |
650 |
0.1982 |
0.1253 |
0.5870 |
| 6.0 |
660 |
- |
0.1242 |
0.5880 |
| 6.0909 |
670 |
- |
0.1241 |
0.5859 |
| 6.1818 |
680 |
- |
0.1265 |
0.5885 |
| 6.2727 |
690 |
- |
0.1287 |
0.5964 |
| 6.3636 |
700 |
0.1613 |
0.1321 |
0.5968 |
| 6.4545 |
710 |
- |
0.1332 |
0.5979 |
| 6.5455 |
720 |
- |
0.1295 |
0.6016 |
| 6.6364 |
730 |
- |
0.1262 |
0.6022 |
| 6.7273 |
740 |
- |
0.1242 |
0.6020 |
| 6.8182 |
750 |
0.172 |
0.1238 |
0.6037 |
| 6.9091 |
760 |
- |
0.1222 |
0.6036 |
| 7.0 |
770 |
- |
0.1213 |
0.6038 |
| 7.0909 |
780 |
- |
0.1208 |
0.6038 |
| 7.1818 |
790 |
- |
0.1200 |
0.6011 |
| 7.2727 |
800 |
0.1486 |
0.1196 |
0.5979 |
| 7.3636 |
810 |
- |
0.1227 |
0.6015 |
| 7.4545 |
820 |
- |
0.1225 |
0.6004 |
| 7.5455 |
830 |
- |
0.1195 |
0.6045 |
| 7.6364 |
840 |
- |
0.1202 |
0.6045 |
| 7.7273 |
850 |
0.1501 |
0.1208 |
0.6044 |
| 7.8182 |
860 |
- |
0.1177 |
0.6038 |
| 7.9091 |
870 |
- |
0.1161 |
0.6031 |
| 8.0 |
880 |
- |
0.1168 |
0.6024 |
| 8.0909 |
890 |
- |
0.1175 |
0.6050 |
| 8.1818 |
900 |
0.1563 |
0.1157 |
0.6063 |
| 8.2727 |
910 |
- |
0.1146 |
0.6056 |
| 8.3636 |
920 |
- |
0.1152 |
0.6073 |
| 8.4545 |
930 |
- |
0.1167 |
0.6077 |
| 8.5455 |
940 |
- |
0.1172 |
0.6087 |
| 8.6364 |
950 |
0.1247 |
0.1169 |
0.6077 |
| 8.7273 |
960 |
- |
0.1159 |
0.6056 |
| 8.8182 |
970 |
- |
0.1151 |
0.6066 |
| 8.9091 |
980 |
- |
0.1161 |
0.6089 |
| 9.0 |
990 |
- |
0.1187 |
0.6071 |
| 9.0909 |
1000 |
0.1497 |
0.1157 |
0.6110 |
| 9.1818 |
1010 |
- |
0.1148 |
0.6086 |
| 9.2727 |
1020 |
- |
0.1134 |
0.6125 |
| 9.3636 |
1030 |
- |
0.1173 |
0.6114 |
| 9.4545 |
1040 |
- |
0.1174 |
0.6118 |
| 9.5455 |
1050 |
0.1025 |
0.1159 |
0.6127 |
| 9.6364 |
1060 |
- |
0.1118 |
0.6093 |
| 9.7273 |
1070 |
- |
0.1114 |
0.6103 |
| 9.8182 |
1080 |
- |
0.1128 |
0.6102 |
| 9.9091 |
1090 |
- |
0.1142 |
0.6116 |
| 10.0 |
1100 |
0.128 |
0.1147 |
0.6115 |
| 10.0909 |
1110 |
- |
0.1143 |
0.6095 |
| 10.1818 |
1120 |
- |
0.1134 |
0.6073 |
| 10.2727 |
1130 |
- |
0.1137 |
0.6059 |
| 10.3636 |
1140 |
- |
0.1143 |
0.6049 |
| 10.4545 |
1150 |
0.1413 |
0.1145 |
0.6047 |
| 10.5455 |
1160 |
- |
0.1154 |
0.6032 |
| 10.6364 |
1170 |
- |
0.1158 |
0.6044 |
| 10.7273 |
1180 |
- |
0.1151 |
0.6060 |
| 10.8182 |
1190 |
- |
0.1145 |
0.6081 |
| 10.9091 |
1200 |
0.1223 |
0.1133 |
0.6084 |
| 11.0 |
1210 |
- |
0.1121 |
0.6090 |
| 11.0909 |
1220 |
- |
0.1130 |
0.6129 |
| 11.1818 |
1230 |
- |
0.1134 |
0.6089 |
| 11.2727 |
1240 |
- |
0.1136 |
0.6112 |
| 11.3636 |
1250 |
0.1199 |
0.1142 |
0.6134 |
| 11.4545 |
1260 |
- |
0.1128 |
0.6145 |
| 11.5455 |
1270 |
- |
0.1097 |
0.6148 |
| 11.6364 |
1280 |
- |
0.1081 |
0.6122 |
| 11.7273 |
1290 |
- |
0.1074 |
0.6126 |
| 11.8182 |
1300 |
0.1143 |
0.1063 |
0.6167 |
| 11.9091 |
1310 |
- |
0.1067 |
0.6163 |
| 12.0 |
1320 |
- |
0.1067 |
0.6190 |
| 12.0909 |
1330 |
- |
0.1075 |
0.6193 |
| 12.1818 |
1340 |
- |
0.1092 |
0.6222 |
| 12.2727 |
1350 |
0.0974 |
0.1087 |
0.6199 |
| 12.3636 |
1360 |
- |
0.1078 |
0.6183 |
| 12.4545 |
1370 |
- |
0.1072 |
0.6180 |
| 12.5455 |
1380 |
- |
0.1072 |
0.6172 |
| 12.6364 |
1390 |
- |
0.1072 |
0.6209 |
| 12.7273 |
1400 |
0.1257 |
0.1056 |
0.6152 |
| 12.8182 |
1410 |
- |
0.1046 |
0.6149 |
| 12.9091 |
1420 |
- |
0.1034 |
0.6142 |
| 13.0 |
1430 |
- |
0.1034 |
0.6165 |
| 13.0909 |
1440 |
- |
0.1046 |
0.6165 |
| 13.1818 |
1450 |
0.0866 |
0.1064 |
0.6177 |
| 13.2727 |
1460 |
- |
0.1070 |
0.6158 |
| 13.3636 |
1470 |
- |
0.1055 |
0.6151 |
| 13.4545 |
1480 |
- |
0.1040 |
0.6182 |
| 13.5455 |
1490 |
- |
0.1042 |
0.6144 |
| 13.6364 |
1500 |
0.0757 |
0.1042 |
0.6151 |
| 13.7273 |
1510 |
- |
0.1056 |
0.6169 |
| 13.8182 |
1520 |
- |
0.1059 |
0.6172 |
| 13.9091 |
1530 |
- |
0.1059 |
0.6181 |
| 14.0 |
1540 |
- |
0.1042 |
0.6167 |
| 14.0909 |
1550 |
0.0754 |
0.1043 |
0.6198 |
| 14.1818 |
1560 |
- |
0.1044 |
0.6215 |
| 14.2727 |
1570 |
- |
0.1042 |
0.6205 |
| 14.3636 |
1580 |
- |
0.1058 |
0.6196 |
| 14.4545 |
1590 |
- |
0.1076 |
0.6212 |
| 14.5455 |
1600 |
0.0901 |
0.1098 |
0.6219 |
| 14.6364 |
1610 |
- |
0.1095 |
0.6247 |
| 14.7273 |
1620 |
- |
0.1084 |
0.6209 |
| 14.8182 |
1630 |
- |
0.1063 |
0.6164 |
| 14.9091 |
1640 |
- |
0.1049 |
0.6170 |
| 15.0 |
1650 |
0.1034 |
0.1043 |
0.6199 |
| 15.0909 |
1660 |
- |
0.1033 |
0.6216 |
| 15.1818 |
1670 |
- |
0.1035 |
0.6244 |
| 15.2727 |
1680 |
- |
0.1048 |
0.6286 |
| 15.3636 |
1690 |
- |
0.1070 |
0.6239 |
| 15.4545 |
1700 |
0.0821 |
0.1084 |
0.6237 |
| 15.5455 |
1710 |
- |
0.1095 |
0.6234 |
| 15.6364 |
1720 |
- |
0.1090 |
0.6221 |
| 15.7273 |
1730 |
- |
0.1089 |
0.6227 |
| 15.8182 |
1740 |
- |
0.1091 |
0.6201 |
| 15.9091 |
1750 |
0.074 |
0.1089 |
0.6195 |
| 16.0 |
1760 |
- |
0.1082 |
0.6205 |
| 16.0909 |
1770 |
- |
0.1076 |
0.6198 |
| 16.1818 |
1780 |
- |
0.1079 |
0.6195 |
| 16.2727 |
1790 |
- |
0.1081 |
0.6238 |
| 16.3636 |
1800 |
0.083 |
0.1066 |
0.6219 |
| 16.4545 |
1810 |
- |
0.1055 |
0.6201 |
| 16.5455 |
1820 |
- |
0.1045 |
0.6217 |
| 16.6364 |
1830 |
- |
0.1030 |
0.6198 |
| 16.7273 |
1840 |
- |
0.1012 |
0.6192 |
| 16.8182 |
1850 |
0.0569 |
0.1012 |
0.6198 |
| 16.9091 |
1860 |
- |
0.1017 |
0.6224 |
| 17.0 |
1870 |
- |
0.1024 |
0.6220 |
| 17.0909 |
1880 |
- |
0.1038 |
0.6217 |
| 17.1818 |
1890 |
- |
0.1046 |
0.6231 |
| 17.2727 |
1900 |
0.1054 |
0.1056 |
0.6191 |
| 17.3636 |
1910 |
- |
0.1064 |
0.6220 |
| 17.4545 |
1920 |
- |
0.1078 |
0.6213 |
| 17.5455 |
1930 |
- |
0.1077 |
0.6228 |
| 17.6364 |
1940 |
- |
0.1071 |
0.6194 |
| 17.7273 |
1950 |
0.0588 |
0.1073 |
0.6227 |
| 17.8182 |
1960 |
- |
0.1073 |
0.6219 |
| 17.9091 |
1970 |
- |
0.1074 |
0.6217 |
| 18.0 |
1980 |
- |
0.1073 |
0.6239 |
| 18.0909 |
1990 |
- |
0.1074 |
0.6210 |
| 18.1818 |
2000 |
0.0772 |
0.1076 |
0.6226 |
| 18.2727 |
2010 |
- |
0.1081 |
0.6215 |
| 18.3636 |
2020 |
- |
0.1081 |
0.6206 |
| 18.4545 |
2030 |
- |
0.1073 |
0.6229 |
| 18.5455 |
2040 |
- |
0.1069 |
0.6221 |
| 18.6364 |
2050 |
0.0669 |
0.1070 |
0.6233 |
| 18.7273 |
2060 |
- |
0.1062 |
0.6233 |
| 18.8182 |
2070 |
- |
0.1051 |
0.6232 |
| 18.9091 |
2080 |
- |
0.1038 |
0.6211 |
| 19.0 |
2090 |
- |
0.1028 |
0.6210 |
| 19.0909 |
2100 |
0.0638 |
0.1015 |
0.6214 |
| 19.1818 |
2110 |
- |
0.1021 |
0.6208 |
| 19.2727 |
2120 |
- |
0.1029 |
0.6205 |
| 19.3636 |
2130 |
- |
0.1033 |
0.6205 |
| 19.4545 |
2140 |
- |
0.1044 |
0.6206 |
| 19.5455 |
2150 |
0.0805 |
0.1030 |
0.6187 |
| 19.6364 |
2160 |
- |
0.1029 |
0.6199 |
| 19.7273 |
2170 |
- |
0.1041 |
0.6214 |
| 19.8182 |
2180 |
- |
0.1050 |
0.6211 |
| 19.9091 |
2190 |
- |
0.1040 |
0.6207 |
| 20.0 |
2200 |
0.0932 |
0.1028 |
0.6201 |
| 20.0909 |
2210 |
- |
0.1019 |
0.6212 |
| 20.1818 |
2220 |
- |
0.1030 |
0.6202 |
| 20.2727 |
2230 |
- |
0.1034 |
0.6212 |
| 20.3636 |
2240 |
- |
0.1029 |
0.6224 |
| 20.4545 |
2250 |
0.0655 |
0.1034 |
0.6203 |
| 20.5455 |
2260 |
- |
0.1030 |
0.6229 |
| 20.6364 |
2270 |
- |
0.1023 |
0.6193 |
| 20.7273 |
2280 |
- |
0.1022 |
0.6185 |
| 20.8182 |
2290 |
- |
0.1017 |
0.6189 |
| 20.9091 |
2300 |
0.0879 |
0.1011 |
0.6178 |
| 21.0 |
2310 |
- |
0.1015 |
0.6175 |
| 21.0909 |
2320 |
- |
0.1019 |
0.6182 |
| 21.1818 |
2330 |
- |
0.1013 |
0.6198 |
| 21.2727 |
2340 |
- |
0.1014 |
0.6187 |
| 21.3636 |
2350 |
0.074 |
0.1022 |
0.6205 |
| 21.4545 |
2360 |
- |
0.1038 |
0.6213 |
| 21.5455 |
2370 |
- |
0.1043 |
0.6236 |
| 21.6364 |
2380 |
- |
0.1044 |
0.6231 |
| 21.7273 |
2390 |
- |
0.1045 |
0.6221 |
| 21.8182 |
2400 |
0.0768 |
0.1050 |
0.6224 |
| 21.9091 |
2410 |
- |
0.1054 |
0.6222 |
| 22.0 |
2420 |
- |
0.1052 |
0.6214 |
| 22.0909 |
2430 |
- |
0.1051 |
0.6186 |
| 22.1818 |
2440 |
- |
0.1055 |
0.6193 |
| 22.2727 |
2450 |
0.0741 |
0.1055 |
0.6205 |
| 22.3636 |
2460 |
- |
0.1053 |
0.6208 |
| 22.4545 |
2470 |
- |
0.1052 |
0.6224 |
| 22.5455 |
2480 |
- |
0.1037 |
0.6191 |
| 22.6364 |
2490 |
- |
0.1032 |
0.6189 |
| 22.7273 |
2500 |
0.0669 |
0.1034 |
0.6189 |
| 22.8182 |
2510 |
- |
0.1037 |
0.6224 |
| 22.9091 |
2520 |
- |
0.1038 |
0.6226 |
| 23.0 |
2530 |
- |
0.1035 |
0.6203 |
| 23.0909 |
2540 |
- |
0.1030 |
0.6198 |
| 23.1818 |
2550 |
0.0762 |
0.1029 |
0.6201 |
| 23.2727 |
2560 |
- |
0.1025 |
0.6195 |
| 23.3636 |
2570 |
- |
0.1024 |
0.6215 |
| 23.4545 |
2580 |
- |
0.1028 |
0.6224 |
| 23.5455 |
2590 |
- |
0.1036 |
0.6232 |
| 23.6364 |
2600 |
0.0815 |
0.1037 |
0.6227 |
| 23.7273 |
2610 |
- |
0.1039 |
0.6227 |
| 23.8182 |
2620 |
- |
0.1036 |
0.6211 |
| 23.9091 |
2630 |
- |
0.1034 |
0.6192 |
| 24.0 |
2640 |
- |
0.1033 |
0.6193 |
| 24.0909 |
2650 |
0.0661 |
0.1033 |
0.6178 |
| 24.1818 |
2660 |
- |
0.1027 |
0.6174 |
| 24.2727 |
2670 |
- |
0.1024 |
0.6198 |
| 24.3636 |
2680 |
- |
0.1025 |
0.6184 |
| 24.4545 |
2690 |
- |
0.1020 |
0.6181 |
| 24.5455 |
2700 |
0.0679 |
0.1020 |
0.6194 |
| 24.6364 |
2710 |
- |
0.1020 |
0.6185 |
| 24.7273 |
2720 |
- |
0.1027 |
0.6196 |
| 24.8182 |
2730 |
- |
0.1027 |
0.6191 |
| 24.9091 |
2740 |
- |
0.1030 |
0.6196 |
| 25.0 |
2750 |
0.0713 |
0.1035 |
0.6208 |
| 25.0909 |
2760 |
- |
0.1042 |
0.6187 |
| 25.1818 |
2770 |
- |
0.1049 |
0.6181 |
| 25.2727 |
2780 |
- |
0.1051 |
0.6200 |
| 25.3636 |
2790 |
- |
0.1051 |
0.6204 |
| 25.4545 |
2800 |
0.0786 |
0.1048 |
0.6184 |
| 25.5455 |
2810 |
- |
0.1049 |
0.6198 |
| 25.6364 |
2820 |
- |
0.1051 |
0.6200 |
| 25.7273 |
2830 |
- |
0.1051 |
0.6198 |
| 25.8182 |
2840 |
- |
0.1048 |
0.6190 |
| 25.9091 |
2850 |
0.0613 |
0.1050 |
0.6196 |
| 26.0 |
2860 |
- |
0.1050 |
0.6183 |
| 26.0909 |
2870 |
- |
0.1047 |
0.6198 |
| 26.1818 |
2880 |
- |
0.1046 |
0.6197 |
| 26.2727 |
2890 |
- |
0.1045 |
0.6217 |
| 26.3636 |
2900 |
0.0576 |
0.1045 |
0.6208 |
| 26.4545 |
2910 |
- |
0.1047 |
0.6192 |
| 26.5455 |
2920 |
- |
0.1046 |
0.6220 |
| 26.6364 |
2930 |
- |
0.1042 |
0.6189 |
| 26.7273 |
2940 |
- |
0.1039 |
0.6204 |
| 26.8182 |
2950 |
0.066 |
0.1036 |
0.6215 |
| 26.9091 |
2960 |
- |
0.1032 |
0.6188 |
| 27.0 |
2970 |
- |
0.1030 |
0.6209 |
| 27.0909 |
2980 |
- |
0.1027 |
0.6203 |
| 27.1818 |
2990 |
- |
0.1026 |
0.6215 |
| 27.2727 |
3000 |
0.0681 |
0.1025 |
0.6212 |
| 27.3636 |
3010 |
- |
0.1026 |
0.6193 |
| 27.4545 |
3020 |
- |
0.1027 |
0.6189 |
| 27.5455 |
3030 |
- |
0.1028 |
0.6195 |
| 27.6364 |
3040 |
- |
0.1030 |
0.6196 |
| 27.7273 |
3050 |
0.081 |
0.1031 |
0.6187 |
| 27.8182 |
3060 |
- |
0.1032 |
0.6181 |
| 27.9091 |
3070 |
- |
0.1030 |
0.6177 |
| 28.0 |
3080 |
- |
0.1029 |
0.6202 |
| 28.0909 |
3090 |
- |
0.1030 |
0.6193 |
| 28.1818 |
3100 |
0.0443 |
0.1031 |
0.6195 |
| 28.2727 |
3110 |
- |
0.1031 |
0.6195 |
| 28.3636 |
3120 |
- |
0.1032 |
0.6177 |
| 28.4545 |
3130 |
- |
0.1034 |
0.6187 |
| 28.5455 |
3140 |
- |
0.1035 |
0.6189 |
| 28.6364 |
3150 |
0.0646 |
0.1036 |
0.6187 |
| 28.7273 |
3160 |
- |
0.1037 |
0.6199 |
| 28.8182 |
3170 |
- |
0.1038 |
0.6208 |
| 28.9091 |
3180 |
- |
0.1038 |
0.6190 |
| 29.0 |
3190 |
- |
0.1038 |
0.6191 |
| 29.0909 |
3200 |
0.0692 |
0.1038 |
0.6190 |
| 29.1818 |
3210 |
- |
0.1038 |
0.6201 |
| 29.2727 |
3220 |
- |
0.1038 |
0.6194 |
| 29.3636 |
3230 |
- |
0.1037 |
0.6201 |
| 29.4545 |
3240 |
- |
0.1037 |
0.6189 |
| 29.5455 |
3250 |
0.084 |
0.1037 |
0.6194 |
| 29.6364 |
3260 |
- |
0.1037 |
0.6189 |
| 29.7273 |
3270 |
- |
0.1038 |
0.6199 |
| 29.8182 |
3280 |
- |
0.1038 |
0.6194 |
| 29.9091 |
3290 |
- |
0.1038 |
0.6191 |
| 30.0 |
3300 |
0.0598 |
0.1038 |
0.6190 |
- The bold row denotes the saved checkpoint.
Framework Versions
- Python: 3.10.12
- Sentence Transformers: 3.3.0
- Transformers: 4.46.2
- PyTorch: 2.5.1+cu121
- Accelerate: 1.1.1
- Datasets: 3.1.0
- Tokenizers: 0.20.3
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
GISTEmbedLoss
@misc{solatorio2024gistembed,
title={GISTEmbed: Guided In-sample Selection of Training Negatives for Text Embedding Fine-tuning},
author={Aivin V. Solatorio},
year={2024},
eprint={2402.16829},
archivePrefix={arXiv},
primaryClass={cs.LG}
}