|
|
|
|
|
import torch |
|
|
from torch import nn |
|
|
import copy |
|
|
|
|
|
|
|
|
|
|
|
def get_intermediate_size(hidden_dim, ffn_dim_multiplier=4, multiple_of=256): |
|
|
hidden_dim = int(2 * hidden_dim / 3) |
|
|
hidden_dim = int(ffn_dim_multiplier * hidden_dim) |
|
|
hidden_dim = multiple_of * ((hidden_dim + multiple_of - 1) // multiple_of) |
|
|
return hidden_dim |
|
|
|
|
|
import torch.nn.functional as F |
|
|
import torch |
|
|
from typing import Optional,Callable,Dict,Any |
|
|
from torch import nn |
|
|
from transformers.models.qwen2_5_vl.modeling_qwen2_5_vl import Qwen2_5_VLAttention,apply_multimodal_rotary_pos_emb,eager_attention_forward,repeat_kv |
|
|
from transformers.models.qwen2_5_vl.configuration_qwen2_5_vl import Qwen2_5_VLTextConfig |
|
|
from transformers import Qwen2_5_VLTextModel,Qwen2_5_VLForConditionalGeneration |
|
|
from transformers.cache_utils import Cache |
|
|
from transformers.modeling_utils import ALL_ATTENTION_FUNCTIONS |
|
|
from transformers.modeling_flash_attention_utils import FlashAttentionKwargs |
|
|
from transformers.processing_utils import Unpack |
|
|
from transformers import AutoProcessor |
|
|
from einops import rearrange, repeat |
|
|
from qwen_vl_utils import process_vision_info |
|
|
import PIL |
|
|
import json |
|
|
import math |
|
|
import numpy as np |
|
|
from huggingface_hub import hf_hub_download |
|
|
|
|
|
def create_sinusoidal_pos_embedding( |
|
|
time: torch.tensor, dimension: int, min_period: float, max_period: float, device="cpu" |
|
|
): |
|
|
"""Computes sine-cosine positional embedding vectors for scalar positions.""" |
|
|
if dimension % 2 != 0: |
|
|
raise ValueError(f"dimension ({dimension}) must be divisible by 2") |
|
|
|
|
|
if time.ndim != 1: |
|
|
raise ValueError("The time tensor is expected to be of shape `(batch_size, )`.") |
|
|
|
|
|
dtype = torch.float32 |
|
|
fraction = torch.linspace(0.0, 1.0, dimension // 2, dtype=dtype, device=device) |
|
|
period = min_period * (max_period / min_period) ** fraction |
|
|
|
|
|
|
|
|
scaling_factor = 1.0 / period * 2 * math.pi |
|
|
sin_input = scaling_factor[None, :] * time[:, None] |
|
|
pos_emb = torch.cat([torch.sin(sin_input), torch.cos(sin_input)], dim=1) |
|
|
return pos_emb |
|
|
|
|
|
def apply_rope(x, positions, max_wavelength=10_000): |
|
|
""" |
|
|
Applies RoPE positions [B, L] to x [B, L, H, D]. |
|
|
""" |
|
|
d_half = x.shape[-1] // 2 |
|
|
device = x.device |
|
|
dtype = x.dtype |
|
|
x = x.to(torch.float32) |
|
|
|
|
|
freq_exponents = (2.0 / x.shape[-1]) * torch.arange(d_half, dtype=torch.float32, device=device) |
|
|
timescale = max_wavelength**freq_exponents |
|
|
radians = positions[..., None].to(torch.float32) / timescale[None, None, :].to(torch.float32) |
|
|
|
|
|
radians = radians[..., None, :] |
|
|
|
|
|
sin = torch.sin(radians) |
|
|
cos = torch.cos(radians) |
|
|
|
|
|
x1, x2 = x.split(d_half, dim=-1) |
|
|
res = torch.empty_like(x) |
|
|
res[..., :d_half] = x1 * cos - x2 * sin |
|
|
res[..., d_half:] = x2 * cos + x1 * sin |
|
|
|
|
|
return res.to(dtype) |
|
|
|
|
|
def make_att_2d_masks(pad_masks, att_masks): |
|
|
"""Copied from big_vision. |
|
|
|
|
|
Tokens can attend to valid inputs tokens which have a cumulative mask_ar |
|
|
smaller or equal to theirs. This way `mask_ar` int[B, N] can be used to |
|
|
setup several types of attention, for example: |
|
|
|
|
|
[[1 1 1 1 1 1]]: pure causal attention. |
|
|
|
|
|
[[0 0 0 1 1 1]]: prefix-lm attention. The first 3 tokens can attend between |
|
|
themselves and the last 3 tokens have a causal attention. The first |
|
|
entry could also be a 1 without changing behaviour. |
|
|
|
|
|
[[1 0 1 0 1 0 0 1 0 0]]: causal attention between 4 blocks. Tokens of a |
|
|
block can attend all previous blocks and all tokens on the same block. |
|
|
|
|
|
Args: |
|
|
input_mask: bool[B, N] true if its part of the input, false if padding. |
|
|
mask_ar: int32[B, N] mask that's 1 where previous tokens cannot depend on |
|
|
it and 0 where it shares the same attention mask as the previous token. |
|
|
""" |
|
|
if att_masks.ndim != 2: |
|
|
raise ValueError(att_masks.ndim) |
|
|
if pad_masks.ndim != 2: |
|
|
raise ValueError(pad_masks.ndim) |
|
|
|
|
|
cumsum = torch.cumsum(att_masks, dim=1) |
|
|
att_2d_masks = cumsum[:, None, :] <= cumsum[:, :, None] |
|
|
pad_2d_masks = pad_masks[:, None, :] * pad_masks[:, :, None] |
|
|
att_2d_masks = att_2d_masks & pad_2d_masks |
|
|
return att_2d_masks |
|
|
|
|
|
class Qwen2_5_VLMoTAttention(Qwen2_5_VLAttention): |
|
|
""" |
|
|
|
|
|
""" |
|
|
|
|
|
def __init__(self, config: Qwen2_5_VLTextConfig, layer_idx: Optional[int] = None): |
|
|
super().__init__(config,layer_idx) |
|
|
|
|
|
|
|
|
def forward( |
|
|
self, |
|
|
hidden_states: torch.Tensor, |
|
|
attention_mask: Optional[torch.Tensor] = None, |
|
|
position_ids: Optional[torch.LongTensor] = None, |
|
|
past_key_value: Optional[Cache] = None, |
|
|
output_attentions: bool = False, |
|
|
use_cache: bool = False, |
|
|
cache_position: Optional[torch.LongTensor] = None, |
|
|
position_embeddings: Optional[tuple[torch.Tensor, torch.Tensor]] = None, |
|
|
fill_kv_cache=True, |
|
|
**kwargs: Unpack[FlashAttentionKwargs], |
|
|
) -> tuple[torch.Tensor, Optional[torch.Tensor], Optional[tuple[torch.Tensor]]]: |
|
|
|
|
|
bsz, q_len, _ = hidden_states.size() |
|
|
|
|
|
query_states = self.q_proj(hidden_states) |
|
|
key_states = self.k_proj(hidden_states) |
|
|
value_states = self.v_proj(hidden_states) |
|
|
|
|
|
query_states = query_states.view(bsz, q_len, -1, self.head_dim).transpose(1, 2) |
|
|
key_states = key_states.view(bsz, q_len, -1, self.head_dim).transpose(1, 2) |
|
|
value_states = value_states.view(bsz, q_len, -1, self.head_dim).transpose(1, 2) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
query_states = rearrange(query_states, 'b h s d -> b s h d') |
|
|
query_states = apply_rope(query_states,position_ids) |
|
|
query_states = rearrange(query_states, 'b s h d -> b h s d') |
|
|
|
|
|
key_states = rearrange(key_states, 'b h s d -> b s h d') |
|
|
key_states = apply_rope(key_states,position_ids) |
|
|
key_states = rearrange(key_states, 'b s h d -> b h s d') |
|
|
|
|
|
|
|
|
if use_cache: |
|
|
|
|
|
past_key_state = past_key_value[self.layer_idx][0] |
|
|
past_value_state = past_key_value[self.layer_idx][1] |
|
|
|
|
|
key_states = torch.cat([past_key_state, key_states], dim=2) |
|
|
|
|
|
value_states = torch.cat( |
|
|
[past_value_state, value_states], dim=2 |
|
|
) |
|
|
key_states = key_states.to(dtype=query_states.dtype) |
|
|
value_states = value_states.to(dtype=query_states.dtype) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
attention_interface: Callable = eager_attention_forward |
|
|
if self.config._attn_implementation != "eager": |
|
|
attention_interface = ALL_ATTENTION_FUNCTIONS[self.config._attn_implementation] |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
attn_output, attn_weights = attention_interface( |
|
|
self, |
|
|
query_states, |
|
|
key_states, |
|
|
value_states, |
|
|
attention_mask, |
|
|
dropout=0.0 if not self.training else self.attention_dropout, |
|
|
scaling=self.scaling, |
|
|
sliding_window=self.sliding_window, |
|
|
position_ids=position_ids, |
|
|
**kwargs, |
|
|
) |
|
|
|
|
|
attn_output = attn_output.reshape(bsz, q_len, -1).contiguous() |
|
|
attn_output = self.o_proj(attn_output) |
|
|
return attn_output, attn_weights |
|
|
from transformers.modeling_outputs import BaseModelOutputWithPast |
|
|
class Qwen2_5_VLAExpert(Qwen2_5_VLTextModel): |
|
|
|
|
|
|
|
|
|
|
|
def __init__(self,config): |
|
|
super().__init__(config) |
|
|
|
|
|
|
|
|
|
|
|
def forward(self, |
|
|
expert_attention_mask: Optional[torch.Tensor] = None, |
|
|
position_ids: Optional[torch.LongTensor] = None, |
|
|
vlm_key_values: Optional[Cache] = None, |
|
|
inputs_embeds: Optional[torch.FloatTensor] = None, |
|
|
use_cache: Optional[bool] = None, |
|
|
cache_position: Optional[torch.LongTensor] = None, |
|
|
output_attentions: Optional[bool] = None, |
|
|
output_hidden_states: Optional[bool] = None, |
|
|
return_dict: Optional[bool] = None, |
|
|
**kwargs: Unpack[FlashAttentionKwargs],): |
|
|
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions |
|
|
output_hidden_states = ( |
|
|
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states |
|
|
) |
|
|
use_cache = use_cache if use_cache is not None else self.config.use_cache |
|
|
|
|
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict |
|
|
|
|
|
|
|
|
if self.gradient_checkpointing and self.training: |
|
|
if use_cache: |
|
|
logger.warning_once( |
|
|
"`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..." |
|
|
) |
|
|
use_cache = False |
|
|
|
|
|
if inputs_embeds is None: |
|
|
raise ValueError("You must specify exactly inputs_embeds") |
|
|
|
|
|
if vlm_key_values is None: |
|
|
raise ValueError("You must specify vlm_cache") |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
hidden_states = inputs_embeds |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
all_hidden_states = () if output_hidden_states else None |
|
|
all_self_attns = () if output_attentions else None |
|
|
|
|
|
for decoder_layer in self.layers: |
|
|
if output_hidden_states: |
|
|
all_hidden_states += (hidden_states,) |
|
|
|
|
|
layer_outputs = decoder_layer( |
|
|
hidden_states, |
|
|
attention_mask=expert_attention_mask, |
|
|
position_ids=position_ids, |
|
|
past_key_value=vlm_key_values, |
|
|
output_attentions=output_attentions, |
|
|
use_cache=use_cache, |
|
|
cache_position=cache_position, |
|
|
position_embeddings=None, |
|
|
**kwargs, |
|
|
) |
|
|
|
|
|
hidden_states = layer_outputs[0] |
|
|
|
|
|
if output_attentions: |
|
|
all_self_attns += (layer_outputs[1],) |
|
|
|
|
|
hidden_states = self.norm(hidden_states) |
|
|
|
|
|
|
|
|
if output_hidden_states: |
|
|
all_hidden_states += (hidden_states,) |
|
|
|
|
|
if not return_dict: |
|
|
return tuple( |
|
|
v for v in [hidden_states, vlm_key_values, all_hidden_states, all_self_attns] if v is not None |
|
|
) |
|
|
return BaseModelOutputWithPast( |
|
|
last_hidden_state=hidden_states, |
|
|
past_key_values=vlm_key_values, |
|
|
hidden_states=all_hidden_states, |
|
|
attentions=all_self_attns, |
|
|
) |
|
|
|
|
|
import tensorflow as tf |
|
|
import dlimp as dl |
|
|
import PIL.Image as Image |
|
|
|
|
|
|
|
|
def resize_image(image1): |
|
|
|
|
|
|
|
|
image1 = tf.cast(image1*255, dtype=tf.uint8) |
|
|
image1 = image1.numpy().transpose(1,2,0) |
|
|
image1 = dl.transforms.resize_image(image1, size=(224,224)) |
|
|
|
|
|
image1 = Image.fromarray(image1.numpy()) |
|
|
return image1 |
|
|
|
|
|
class VLAWithExpert(nn.Module): |
|
|
|
|
|
|
|
|
_ACTION_TOKEN_MIN = 151665 |
|
|
_ACTION_TOKEN_MAX = 153712 |
|
|
|
|
|
|
|
|
def __init__(self,config=None,device=None): |
|
|
super().__init__() |
|
|
|
|
|
|
|
|
self.vlm = Qwen2_5_VLForConditionalGeneration.from_pretrained( |
|
|
"declare-lab/nora-long", |
|
|
torch_dtype=torch.bfloat16, |
|
|
attn_implementation="sdpa", |
|
|
) |
|
|
if config is not None: |
|
|
self.config = config |
|
|
else: |
|
|
self.config = {'max_action_dim':7,"max_state_dim":8} |
|
|
|
|
|
|
|
|
print("Loading expert model...") |
|
|
|
|
|
self.lm_expert_config = copy.deepcopy(self.vlm.config.text_config) |
|
|
|
|
|
|
|
|
self.processor = AutoProcessor.from_pretrained( |
|
|
"declare-lab/nora", trust_remote_code=True |
|
|
) |
|
|
self.fast_tokenizer = fast_tokenizer = AutoProcessor.from_pretrained( |
|
|
"physical-intelligence/fast", trust_remote_code=True |
|
|
) |
|
|
self.fast_tokenizer.action_dim = 7 |
|
|
self.fast_tokenizer.time_horizon = 5 |
|
|
hidden_size = self.lm_expert_config.hidden_size |
|
|
expert_width_multiplier = 0.375 |
|
|
self.lm_expert_config.hidden_size = int(hidden_size * expert_width_multiplier) |
|
|
self.lm_expert_config.intermediate_size = get_intermediate_size(int(hidden_size * expert_width_multiplier)) |
|
|
self.lm_expert_config.num_hidden_layers = self.vlm.config.num_hidden_layers |
|
|
self.lm_expert_config.num_attention_heads = 6 |
|
|
|
|
|
self.action_expert = Qwen2_5_VLAExpert._from_config(self.lm_expert_config,torch_dtype=torch.bfloat16) |
|
|
self.action_chunk_length = 5 |
|
|
|
|
|
self.device = self.vlm.device |
|
|
|
|
|
|
|
|
self._replace_action_expert_attention() |
|
|
self.action_expert.embed_tokens = None |
|
|
self.vlm_kv_cache = None |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
self.action_in_proj = nn.Linear(self.config['max_action_dim'],self.lm_expert_config.hidden_size) |
|
|
self.action_out_proj = nn.Linear(self.lm_expert_config.hidden_size, self.config['max_action_dim']) |
|
|
self.action_time_mlp_in = nn.Linear( |
|
|
self.lm_expert_config.hidden_size * 2, self.lm_expert_config.hidden_size |
|
|
) |
|
|
self.action_time_mlp_out = nn.Linear( |
|
|
self.lm_expert_config.hidden_size, self.lm_expert_config.hidden_size |
|
|
) |
|
|
self.state_emb = nn.Linear(self.config['max_action_dim'], self.lm_expert_config.hidden_size) |
|
|
|
|
|
self.device = self.vlm.device |
|
|
print(f"*** Loading normalization stats from HF Hub ***") |
|
|
norm_stats_path = hf_hub_download(repo_id='declare-lab/nora', filename="norm_stats.json") |
|
|
with open(norm_stats_path, "r") as f: |
|
|
self.norm_stats = json.load(f) |
|
|
|
|
|
libero_stats = hf_hub_download(repo_id='moojink/openvla-7b-oft-finetuned-libero-spatial-object-goal-10', filename="dataset_statistics.json") |
|
|
with open(libero_stats, "r") as f: |
|
|
self.norm_stats.update(json.load(f)) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def sample_noise(self, shape, device,dtype=torch.float32): |
|
|
noise = torch.normal( |
|
|
mean=0.0, |
|
|
std=1.0, |
|
|
size=shape, |
|
|
dtype=dtype, |
|
|
device=device, |
|
|
) |
|
|
return noise |
|
|
def sample_time(self, bsize, device,dtype=torch.float32): |
|
|
beta_dist = torch.distributions.Beta(concentration1=1.5, concentration0=1.0) |
|
|
time_beta = beta_dist.sample((bsize,)).to(device=device, dtype=dtype) |
|
|
time = time_beta * 0.999 + 0.001 |
|
|
return time |
|
|
|
|
|
def _replace_action_expert_attention(self): |
|
|
""" |
|
|
Iterate through the model's layers and replace the default |
|
|
Qwen2_5_VLAttention with our custom Qwen2_5_VLMoTAttention. |
|
|
""" |
|
|
for i, layer in enumerate(self.action_expert.layers): |
|
|
layer.self_attn = Qwen2_5_VLMoTAttention( |
|
|
config=self.action_expert.config, |
|
|
layer_idx=i |
|
|
).to(self.action_expert.dtype) |
|
|
layer.self_attn.to(self.action_expert.device) |
|
|
|
|
|
|
|
|
def denoise_step( |
|
|
self, |
|
|
x_t: torch.Tensor, |
|
|
timestep: torch.Tensor, |
|
|
states, |
|
|
vlm_kv_cache: tuple, |
|
|
full_2d_attn_mask: torch.Tensor): |
|
|
""" |
|
|
Applies one denoising step to the noisy action `x_t` at a given `timestep`, |
|
|
conditioned on the VLM's output cache. |
|
|
|
|
|
This function is derived from the main `forward` pass, encapsulating the |
|
|
logic for a single step in the diffusion sampling process. |
|
|
|
|
|
Args: |
|
|
self: The instance of the model class. |
|
|
x_t (torch.Tensor): The noisy action tensor from the previous step. |
|
|
Shape: (batch_size, action_chunk_length, action_dim). |
|
|
timestep (torch.Tensor): The current timestep for each sample in the batch. |
|
|
Shape: (batch_size,). |
|
|
vlm_kv_cache (tuple): The pre-computed key-value cache from the VLM, |
|
|
used as conditioning. |
|
|
vlm_pad_mask (torch.Tensor): The padding mask for the VLM inputs, required |
|
|
to build the cross-attention mask. |
|
|
Shape: (batch_size, vlm_seq_len). |
|
|
|
|
|
Returns: |
|
|
torch.Tensor: The predicted noise `u_t` (epsilon). |
|
|
Shape: (batch_size, action_chunk_length, action_dim). |
|
|
""" |
|
|
device = x_t.device |
|
|
bsz = x_t.shape[0] |
|
|
|
|
|
|
|
|
x_t = x_t.to(dtype=self.vlm.dtype) |
|
|
|
|
|
action_input_embeds = self.action_in_proj(x_t) |
|
|
|
|
|
|
|
|
time_emb = create_sinusoidal_pos_embedding( |
|
|
timestep, |
|
|
self.lm_expert_config.hidden_size, |
|
|
4e-3, |
|
|
4.0, |
|
|
device=device, |
|
|
) |
|
|
time_emb = time_emb.type(dtype=x_t.dtype) |
|
|
|
|
|
time_emb = time_emb[:, None, :].expand_as(action_input_embeds) |
|
|
|
|
|
|
|
|
action_time_emb = torch.cat([action_input_embeds, time_emb], dim=2) |
|
|
action_time_emb = self.action_time_mlp_in(action_time_emb) |
|
|
action_time_emb = F.silu(action_time_emb) |
|
|
action_time_emb = self.action_time_mlp_out(action_time_emb) |
|
|
if states is not None: |
|
|
states_embed = self.state_emb(states) |
|
|
|
|
|
states_embed = states_embed.unsqueeze(1).expand_as(action_input_embeds) |
|
|
action_time_emb += states_embed |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
expert_attention_mask = full_2d_attn_mask[:, -self.action_chunk_length:, :] |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
position_ids = torch.arange(self.action_chunk_length, device=device) |
|
|
|
|
|
|
|
|
expert_output = self.action_expert( |
|
|
inputs_embeds=action_time_emb, |
|
|
expert_attention_mask=expert_attention_mask.unsqueeze(1).bool(), |
|
|
position_ids=position_ids, |
|
|
vlm_key_values=vlm_kv_cache, |
|
|
use_cache=True, |
|
|
) |
|
|
|
|
|
|
|
|
velocity = self.action_out_proj(expert_output.last_hidden_state) |
|
|
|
|
|
return velocity |
|
|
|
|
|
def sample_fast_tokens(self,image,image2=None,instruction=None,states=None,unnormalize=False,do_sample=False): |
|
|
device = self.vlm.device |
|
|
states = states.to(device) |
|
|
|
|
|
|
|
|
image = resize_image(image) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
if image2 is not None: |
|
|
image2 = resize_image(image2) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
messages = [ |
|
|
{ |
|
|
"role": "user", |
|
|
"content": [ |
|
|
{ |
|
|
"type": "image", |
|
|
"image": image, |
|
|
"resized_height": 224, |
|
|
"resized_width": 224, |
|
|
},{ |
|
|
"type": "image", "image": image2, |
|
|
"resized_height": 224, |
|
|
"resized_width": 224, |
|
|
}, |
|
|
|
|
|
{"type": "text", "text": instruction}, |
|
|
], |
|
|
} |
|
|
] |
|
|
else: |
|
|
messages = [ |
|
|
{ |
|
|
"role": "user", |
|
|
"content": [ |
|
|
{ |
|
|
"type": "image", |
|
|
"image": image, |
|
|
"resized_height": 224, |
|
|
"resized_width": 224, |
|
|
} , |
|
|
{"type": "text", "text": instruction}, |
|
|
], |
|
|
} |
|
|
] |
|
|
|
|
|
text = self.processor.apply_chat_template( |
|
|
messages, tokenize=False, add_generation_prompt=True |
|
|
) |
|
|
|
|
|
|
|
|
image_inputs, video_inputs = process_vision_info(messages) |
|
|
|
|
|
|
|
|
|
|
|
inputs = self.processor( |
|
|
text=[text], |
|
|
images=image_inputs, |
|
|
videos=video_inputs, |
|
|
padding=True, |
|
|
return_tensors="pt", |
|
|
) |
|
|
|
|
|
|
|
|
|
|
|
inputs = {k: v.to(device) for k, v in inputs.items()} |
|
|
|
|
|
generated_ids = self.vlm.generate(**inputs,do_sample=True,temperature=1.0) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
start_idx = (self._ACTION_TOKEN_MIN <= generated_ids[0]) & (generated_ids[0] <= self._ACTION_TOKEN_MAX) |
|
|
start_idx = torch.where(start_idx)[0] |
|
|
|
|
|
if len(start_idx) > 0: |
|
|
start_index = start_idx[0].item() |
|
|
else: |
|
|
start_index = None |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
output_action = self.fast_tokenizer.decode([generated_ids[0][start_idx] - self._ACTION_TOKEN_MIN]) |
|
|
return output_action |
|
|
|
|
|
|
|
|
@torch.no_grad() |
|
|
def sample_actions(self, image,image2=None,instruction=None,num_steps:int = 25,states=None,unnorm_key='libero_10',unnormalize=True): |
|
|
""" |
|
|
Generates actions by running the full diffusion sampling process. |
|
|
|
|
|
This function first computes the VLM's key-value cache to use as a |
|
|
conditioning context. It then uses an iterative Euler-method-based |
|
|
sampler, calling `denoise_step` at each timestep to refine a noise |
|
|
tensor into a final action. |
|
|
|
|
|
Args: |
|
|
self: The instance of the model class. |
|
|
vlm_inputs (dict): A dictionary containing the inputs for the VLM, |
|
|
e.g., {'input_ids': ..., 'attention_mask': ...}. |
|
|
noise (Tensor, optional): An initial noise tensor to start the |
|
|
sampling from. If None, it will be |
|
|
sampled randomly. Defaults to None. |
|
|
Shape: (batch_size, action_chunk_length, action_dim). |
|
|
|
|
|
Returns: |
|
|
Tensor: The final, denoised action tensor. |
|
|
Shape: (batch_size, action_chunk_length, action_dim). |
|
|
""" |
|
|
|
|
|
|
|
|
|
|
|
device = self.vlm.device |
|
|
states = states.to(device) |
|
|
|
|
|
|
|
|
image = resize_image(image) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
if image2 is not None: |
|
|
image2 = resize_image(image2) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
messages = [ |
|
|
{ |
|
|
"role": "user", |
|
|
"content": [ |
|
|
{ |
|
|
"type": "image", |
|
|
"image": image, |
|
|
"resized_height": 224, |
|
|
"resized_width": 224, |
|
|
},{ |
|
|
"type": "image", "image": image2, |
|
|
"resized_height": 224, |
|
|
"resized_width": 224, |
|
|
}, |
|
|
|
|
|
{"type": "text", "text": instruction}, |
|
|
], |
|
|
} |
|
|
] |
|
|
else: |
|
|
messages = [ |
|
|
{ |
|
|
"role": "user", |
|
|
"content": [ |
|
|
{ |
|
|
"type": "image", |
|
|
"image": image, |
|
|
"resized_height": 224, |
|
|
"resized_width": 224, |
|
|
} , |
|
|
{"type": "text", "text": instruction}, |
|
|
], |
|
|
} |
|
|
] |
|
|
|
|
|
text = self.processor.apply_chat_template( |
|
|
messages, tokenize=False, add_generation_prompt=True |
|
|
) |
|
|
|
|
|
|
|
|
image_inputs, video_inputs = process_vision_info(messages) |
|
|
|
|
|
|
|
|
|
|
|
inputs = self.processor( |
|
|
text=[text], |
|
|
images=image_inputs, |
|
|
videos=video_inputs, |
|
|
padding=True, |
|
|
return_tensors="pt", |
|
|
) |
|
|
|
|
|
|
|
|
|
|
|
inputs = {k: v.to(device) for k, v in inputs.items()} |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
bsz = inputs['input_ids'].shape[0] |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
if self.vlm_kv_cache is None: |
|
|
vlm_outputs = self.vlm(**inputs) |
|
|
vlm_kv_cache = vlm_outputs.past_key_values |
|
|
self.vlm_kv_cache = vlm_kv_cache |
|
|
|
|
|
|
|
|
|
|
|
vlm_pad_mask = inputs['attention_mask'].clone() |
|
|
|
|
|
|
|
|
|
|
|
actions_shape = (bsz, self.action_chunk_length, self.config['max_action_dim']) |
|
|
x_t = self.sample_noise(actions_shape, device=device,dtype=self.vlm.dtype) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
dt = -1.0 / num_steps |
|
|
dt_tensor = torch.tensor(dt, dtype=self.vlm.dtype, device=device) |
|
|
time = torch.tensor(1.0, dtype=self.vlm.dtype, device=device) |
|
|
states = states.to(self.vlm.dtype) |
|
|
|
|
|
|
|
|
|
|
|
action_pad_mask = torch.ones(bsz, self.action_chunk_length, device=device).bool() |
|
|
|
|
|
|
|
|
|
|
|
action_attn_mask = torch.zeros(bsz, self.action_chunk_length, device=device).bool() |
|
|
|
|
|
|
|
|
|
|
|
concat_pad_mask = torch.cat([vlm_pad_mask, action_pad_mask], dim=1) |
|
|
concat_attn_mask = torch.cat([vlm_pad_mask, action_attn_mask], dim=1) |
|
|
|
|
|
|
|
|
full_2d_attn_mask = make_att_2d_masks(concat_pad_mask, concat_attn_mask) |
|
|
while time >= -dt / 2: |
|
|
with torch.no_grad(): |
|
|
|
|
|
expanded_time = time.expand(bsz) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
v_t = self.denoise_step( |
|
|
x_t=x_t, |
|
|
timestep=expanded_time, |
|
|
states=states, |
|
|
vlm_kv_cache=self.vlm_kv_cache, |
|
|
full_2d_attn_mask=full_2d_attn_mask, |
|
|
) |
|
|
|
|
|
|
|
|
|
|
|
x_t += dt * v_t |
|
|
time += dt |
|
|
|
|
|
|
|
|
normalized_action = x_t.cpu().float().numpy() |
|
|
|
|
|
if unnormalize is False: |
|
|
|
|
|
return normalized_action |
|
|
|
|
|
action_stats = self._get_action_stats(unnorm_key) |
|
|
|
|
|
mask = action_stats.get("mask", np.ones_like(action_stats["q01"], dtype=bool)) |
|
|
action_high, action_low = np.array(action_stats["q99"]), np.array(action_stats["q01"]) |
|
|
|
|
|
actions = np.where( |
|
|
mask, |
|
|
0.5 * (normalized_action + 1) * (action_high - action_low) + action_low, |
|
|
normalized_action, |
|
|
) |
|
|
|
|
|
return actions |
|
|
|
|
|
def _get_action_stats(self, unnorm_key: str) -> Dict[str, Any]: |
|
|
if unnorm_key not in self.norm_stats: |
|
|
raise KeyError( |
|
|
f"The `unnorm_key` '{unnorm_key}' is not in the set of available dataset statistics. " |
|
|
f"Please choose from: {list(self.norm_stats.keys())}" |
|
|
) |
|
|
return self.norm_stats[unnorm_key]["action"] |
|
|
def forward(self,vlm_inputs, actions,alpha=10.0,use_state=False,states=None ,**kwargs): |
|
|
""" |
|
|
The main forward pass that uses the student model with the expert's cache. |
|
|
""" |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
device = self.vlm.device |
|
|
|
|
|
vlm_outputs = self.vlm( |
|
|
**vlm_inputs, |
|
|
use_cache=True |
|
|
) |
|
|
vlm_kv_cache = vlm_outputs.past_key_values |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
bsz = vlm_inputs['input_ids'].shape[0] |
|
|
vlm_pad_mask = vlm_inputs['expert_attention'].clone() |
|
|
vlm_attn_mask = vlm_inputs['attention_mask'].clone() |
|
|
|
|
|
|
|
|
|
|
|
actions = actions.to(self.vlm.dtype) |
|
|
noise = self.sample_noise(actions.shape, actions.device,dtype=actions.dtype) |
|
|
|
|
|
|
|
|
time = self.sample_time(actions.shape[0], actions.device,dtype=actions.dtype) |
|
|
|
|
|
|
|
|
|
|
|
time_expanded = time[:, None, None] |
|
|
|
|
|
|
|
|
x_t = time_expanded * noise + (1 - time_expanded) * actions |
|
|
u_t = noise - actions |
|
|
|
|
|
action_input_embeds = self.action_in_proj(x_t) |
|
|
|
|
|
time_emb = create_sinusoidal_pos_embedding( |
|
|
time, |
|
|
self.lm_expert_config.hidden_size, |
|
|
4e-3, |
|
|
4.0, |
|
|
device=device, |
|
|
) |
|
|
|
|
|
time_emb = time_emb.type(dtype=actions.dtype) |
|
|
|
|
|
time_emb = time_emb[:, None, :].expand_as(action_input_embeds) |
|
|
|
|
|
|
|
|
action_time_emb = torch.cat([action_input_embeds, time_emb], dim=2) |
|
|
|
|
|
action_time_emb = self.action_time_mlp_in(action_time_emb) |
|
|
action_time_emb = F.silu(action_time_emb) |
|
|
action_time_emb = self.action_time_mlp_out(action_time_emb) |
|
|
|
|
|
if use_state: |
|
|
|
|
|
states_embed = self.state_emb(states) |
|
|
|
|
|
states_embed = states_embed.unsqueeze(1).expand_as(action_input_embeds) |
|
|
action_time_emb += states_embed |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
action_pad_mask = torch.ones(bsz,self.action_chunk_length,device=device).bool() |
|
|
action_attn_mask = torch.zeros(bsz,self.action_chunk_length,device=device).bool() |
|
|
|
|
|
concat_action_mask = torch.cat([vlm_pad_mask,action_pad_mask],dim=1) |
|
|
concat_attn_mask = torch.cat([vlm_attn_mask,action_attn_mask],dim=1) |
|
|
|
|
|
attn = make_att_2d_masks(concat_action_mask,concat_attn_mask) |
|
|
expert_attention_mask = attn[:, -self.action_chunk_length:, :] |
|
|
|
|
|
|
|
|
position_ids = torch.arange(self.action_chunk_length,device=device) |
|
|
expert_output = self.action_expert(inputs_embeds=action_time_emb, |
|
|
expert_attention_mask=expert_attention_mask.unsqueeze(1).bool(), |
|
|
position_ids= position_ids, |
|
|
vlm_key_values=vlm_kv_cache, |
|
|
use_cache=True) |
|
|
|
|
|
action_out = self.action_out_proj(expert_output.last_hidden_state) |
|
|
expert_loss = alpha*F.mse_loss(action_out, u_t, reduction='mean') |
|
|
|
|
|
loss = expert_loss+ vlm_outputs.loss |
|
|
|
|
|
return {'expert_loss': expert_loss,'combined_loss':loss,'vlm_loss':vlm_outputs.loss} |
|
|
|