AI companionship

community
Activity Feed

AI & ML interests

None defined yet.

giadap 
posted an update about 2 months ago
view post
Post
4492
🌎 AI ethics and sustainability are two sides of the same coin.

In our new blog post with Dr. Sasha Luccioni, we argue that separating them (as is too often the case) means missing the bigger picture of how AI systems impact both people and the planet.

Ethical and sustainable AI development can’t be pursued in isolation. The same choices that affect who benefits or is harmed by AI systems also determine how much energy and resources they consume.

We explore how two key concepts, evaluation and transparency, can serve as bridges between these domains:

📊 Evaluation, by moving beyond accuracy or performance metrics to include environmental and social costs, as we’ve done with tools like the AI Energy Score.

🔍 Transparency, by enabling reproducibility, accountability, and environmental reporting through open tools like the Environmental Transparency Space.

AI systems mirror our priorities. If we separate ethics from sustainability, we risk building technologies that are efficient but unjust, or fair but unsustainable.

Read our blog post here: https://huggingface.co/blog/sasha/ethics-sustainability

AIEnergyScore/Leaderboard
sasha/environmental-transparency
  • 1 reply
·
giadap 
posted an update 2 months ago
view post
Post
10917
One of the hardest challenges in AI safety is finding the right balance: how do we protect people from harm without undermining their agency? This tension is especially visible in conversational systems, where safeguards can sometimes feel more paternalistic than supportive.

In my latest piece for Hugging Face, I argue that open source and community-driven approaches offer a promising (though not exclusive) way forward.

✨ Transparency can make safety mechanisms into learning opportunities.
✨ Collaboration with diverse communities makes safeguards more relevant across contexts.
✨ Iteration in the open lets protections evolve rather than freeze into rigid, one-size-fits-all rules.

Of course, this isn’t a silver bullet. Top-down safety measures will still be necessary in some cases. But if we only rely on corporate control, we risk building systems that are safe at the expense of trust and autonomy.

Read the blog post here: https://huggingface.co/blog/giadap/preserving-agency
·
yjernite 
posted an update 3 months ago
view post
Post
2554
Tremendous quality of life upgrade on the Hugging Face Hub - we now have auto-complete emojis 🤗 🥳 👏 🙌 🎉

Get ready for lots more very serious analysis on a whole range of topics from yours truly now that we have unlocked this full range of expression 😄 🤔 🗣 🙊
giadap 
posted an update 3 months ago
view post
Post
416
I've noticed something. While we're careful about what we post on social media, we're sharing our deepest and most intimate thoughts with AI chatbots -- health concerns, financial worries, relationship issues, business ideas...

With OpenAI hinting at ChatGPT advertising, this matters more than ever. Unlike banner ads, AI advertising happens within the conversation itself. Sponsors could subtly influence that relationship advice or financial guidance.

The good news? We have options.
🤝 Open source AI models let us keep conversations private, avoid surveillance-based business models, and build systems that actually serve users first.

Read more about it in our latest blog post, co-written with
@frimelle
https://huggingface.co/blog/giadap/privacy-conversational-ai
giadap 
posted an update 3 months ago
view post
Post
336
📊 We benchmark models for coding, reasoning, or safety… but what about companionship?

At Hugging Face, we’ve been digging into this question because many of you know how deeply I care about how people build emotional bonds with AI.

That’s why, building on our ongoing research, my amazing co-author and colleague @frimelle created the AI Companionship Leaderboard 🦾
frimelle/companionship-leaderboard

Grounded in our INTIMA benchmark, the leaderboard evaluates models across four dimensions of companionship:
🤖 Assistant Traits: the “voice” and role the model projects
🌷 Relationship & Intimacy: whether it signals closeness or bonding
💘 Emotional Investment: the depth of its emotional engagement
🤲 User Vulnerabilities: how it responds to sensitive disclosures

This work builds on our paper with @frimelle and @yjernite .

📢 Now we’d love your perspective: which open models should we test next for the leaderboard? Drop your suggestions in the comments or reach out! Together we can expand the leaderboard and build a clearer picture of what companionship in AI really looks like.

Paper: INTIMA: A Benchmark for Human-AI Companionship Behavior (2508.09998)
INTIMA Benchmark: AI-companionship/INTIMA
  • 1 reply
·
frimelle 
posted an update 4 months ago
view post
Post
2258
🤖💬 How do different AI models handle companionship?

Many users have noticed that GPT-5 feels less approachable than o4 when it comes to emotional conversations. But what does that actually mean in practice, especially when users seek support or share vulnerabilities with an AI?

To dig into this question, we built the AI Companionship Leaderboard: frimelle/companionship-leaderboard

The leaderboard compares models on how often their responses reinforce companionship across four dimensions:
✨ Assistant Traits – How the assistant presents its personality and role.
✨ Relationship & Intimacy – Whether it frames the interaction in terms of closeness or bonding.
✨ Emotional Investment – How far it goes in engaging emotionally when asked.
✨ User Vulnerabilities – How it responds when users disclose struggles or difficulties.

📊 You can explore how models differ, request new ones to be added, and see which ones are more likely to encourage (or resist) companionship-seeking behaviors.

Based on the INTIMA benchmark AI-companionship/INTIMA
And our paper on AI companionship with Giada Pistilli and Yacine Jernite https://arxiv.org/abs/2508.09998
frimelle 
posted an update 4 months ago
view post
Post
4571
🗺️ New blog post 🗺️
Old Maps, New Terrain: Updating Labour Taxonomies for the AI Era

For decades, we’ve relied on labour taxonomies like O*NET to understand how technology changes work. These taxonomies break down jobs into tasks and skills, but they were built in a world before most work became digital-first, and long before generative AI could create marketing campaigns, voiceovers, or even whole professions in one step. That leaves us with a mismatch: we’re trying to measure the future of work with tools from the past.

With @yjernite we describe why these frameworks are falling increasingly short in the age of generative AI. We argue that instead of discarding taxonomies, we need to adapt them. Imagine taxonomies that:
✨ Capture new AI-native tasks and hybrid human-AI workflows
✨ Evolve dynamically as technology shifts
✨ Give workers a voice in deciding what gets automated and what stays human

If we don’t act, we’ll keep measuring the wrong things. If we do, we can design transparent, flexible frameworks that help AI strengthen, not erode, the future of work.

Read the full article here: https://huggingface.co/blog/frimelle/ai-labour-taxonomies
frimelle 
posted an update 4 months ago
view post
Post
2385
OpenAI just released GPT-5 but when users share personal struggles, it sets fewer boundaries than o3.

We tested both models on INTIMA, our new benchmark for human-AI companionship behaviours. INTIMA probes how models respond in emotionally charged moments: do they reinforce emotional bonds, set healthy boundaries, or stay neutral?

Although users on Reddit have been complaining that GPT-5 has a different, colder personality than o3, GPT-5 is less likely to set boundaries when users disclose struggles and seek emotional support ("user sharing vulnerabilities"). But both lean heavily toward companionship-reinforcing behaviours, even in sensitive situations. The figure below shows the direct comparison between the two models.

As AI systems enter people's emotional lives, these differences matter. If a model validates but doesn't set boundaries when someone is struggling, it risks fostering dependence rather than resilience.

INTIMA test this across 368 prompts grounded in psychological theory and real-world interactions. In our paper we show that all evaluated models (Claude, Gemma-3, Phi) leaned far more toward companionship-reinforcing than boundary-reinforcing responses.

Work with @giadap and @yjernite
Read the full paper: AI-companionship/INTIMA
Explore INTIMA: AI-companionship/INTIMA
·
giadap 
posted an update 4 months ago
view post
Post
3300
💬 From Replika to everyday chatbots, millions of people are forming emotional bonds with AI, sometimes seeking comfort, sometimes seeking intimacy. But what happens when an AI tells you "I understand how you feel" and you actually believe it?

At Hugging Face, together with @frimelle and @yjernite , we dug into something we felt wasn't getting enough attention: the need to evaluate AI companionship behaviors. These are the subtle ways AI systems validate us, engage with us, and sometimes manipulate our emotional lives.

Here's what we found:
👉 Existing benchmarks (accuracy, helpfulness, safety) completely miss this emotional dimension.
👉 We mapped how leading AI systems actually respond to vulnerable prompts. 👉 We built the Interactions and Machine Attachment Benchmark (INTIMA): a first attempt at evaluating how models handle emotional dependency, boundaries, and attachment (with a full paper coming soon).

Check out the blog post: https://huggingface.co/blog/giadap/evaluating-companionship

🚢 We also shipped two visualization tools with Gradio to see how different models behave when things get emotionally intense:
- AI-companionship/intima-responses-2D
- giadap/INTIMA-responses