Update app.py
#2
by
testqservicesitsolutions
- opened
app.py
CHANGED
|
@@ -1,5 +1,6 @@
|
|
| 1 |
import os
|
| 2 |
import gradio as gr
|
|
|
|
| 3 |
from llama_index.core import SimpleDirectoryReader, VectorStoreIndex
|
| 4 |
from langchain_community.embeddings import HuggingFaceEmbeddings
|
| 5 |
from llama_index.llms.llama_cpp import LlamaCPP
|
|
@@ -10,17 +11,11 @@ from llama_index.llms.llama_cpp.llama_utils import (
|
|
| 10 |
|
| 11 |
model_url = 'https://huggingface.co/bartowski/Llama-3.2-3B-Instruct-GGUF/resolve/main/Llama-3.2-3B-Instruct-Q4_K_M.gguf'
|
| 12 |
llm = LlamaCPP(
|
| 13 |
-
# You can pass in the URL to a GGML model to download it automatically
|
| 14 |
model_url=model_url,
|
| 15 |
temperature=0.1,
|
| 16 |
max_new_tokens=256,
|
| 17 |
context_window=2048,
|
| 18 |
-
# kwargs to pass to __call__()
|
| 19 |
-
generate_kwargs={},
|
| 20 |
-
# kwargs to pass to __init__()
|
| 21 |
-
# set to at least 1 to use GPU
|
| 22 |
model_kwargs={"n_gpu_layers": 1},
|
| 23 |
-
# transform inputs into Llama2 format
|
| 24 |
messages_to_prompt=messages_to_prompt,
|
| 25 |
completion_to_prompt=completion_to_prompt,
|
| 26 |
verbose=True,
|
|
@@ -29,13 +24,20 @@ llm = LlamaCPP(
|
|
| 29 |
embeddings = HuggingFaceEmbeddings(model_name="BAAI/bge-small-en-v1.5")
|
| 30 |
|
| 31 |
def initialize_index():
|
| 32 |
-
"""Initialize the vector store index from
|
| 33 |
-
# Load
|
| 34 |
-
|
| 35 |
-
|
| 36 |
-
|
| 37 |
-
|
| 38 |
-
documents =
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 39 |
|
| 40 |
# Create index
|
| 41 |
index = VectorStoreIndex.from_documents(
|
|
@@ -53,25 +55,22 @@ def process_query(
|
|
| 53 |
message: str,
|
| 54 |
history: list[tuple[str, str]],
|
| 55 |
) -> str:
|
| 56 |
-
"""Process a query using the RAG system"""
|
| 57 |
try:
|
| 58 |
# Get response from the query engine
|
| 59 |
response = query_engine.query(
|
| 60 |
message,
|
| 61 |
-
#streaming=True
|
| 62 |
)
|
| 63 |
-
return
|
| 64 |
except Exception as e:
|
| 65 |
return f"Error processing query: {str(e)}"
|
| 66 |
|
| 67 |
-
#
|
| 68 |
-
|
| 69 |
-
process_query,
|
| 70 |
-
|
| 71 |
-
|
| 72 |
-
#undo_btn="Delete Previous",
|
| 73 |
-
#clear_btn="Clear",
|
| 74 |
)
|
| 75 |
|
| 76 |
if __name__ == "__main__":
|
| 77 |
-
|
|
|
|
| 1 |
import os
|
| 2 |
import gradio as gr
|
| 3 |
+
import json
|
| 4 |
from llama_index.core import SimpleDirectoryReader, VectorStoreIndex
|
| 5 |
from langchain_community.embeddings import HuggingFaceEmbeddings
|
| 6 |
from llama_index.llms.llama_cpp import LlamaCPP
|
|
|
|
| 11 |
|
| 12 |
model_url = 'https://huggingface.co/bartowski/Llama-3.2-3B-Instruct-GGUF/resolve/main/Llama-3.2-3B-Instruct-Q4_K_M.gguf'
|
| 13 |
llm = LlamaCPP(
|
|
|
|
| 14 |
model_url=model_url,
|
| 15 |
temperature=0.1,
|
| 16 |
max_new_tokens=256,
|
| 17 |
context_window=2048,
|
|
|
|
|
|
|
|
|
|
|
|
|
| 18 |
model_kwargs={"n_gpu_layers": 1},
|
|
|
|
| 19 |
messages_to_prompt=messages_to_prompt,
|
| 20 |
completion_to_prompt=completion_to_prompt,
|
| 21 |
verbose=True,
|
|
|
|
| 24 |
embeddings = HuggingFaceEmbeddings(model_name="BAAI/bge-small-en-v1.5")
|
| 25 |
|
| 26 |
def initialize_index():
|
| 27 |
+
"""Initialize the vector store index from JSON data."""
|
| 28 |
+
# Load JSON data
|
| 29 |
+
with open("dummy_users_with_tasks.json", "r") as file:
|
| 30 |
+
json_data = json.load(file)
|
| 31 |
+
|
| 32 |
+
# Convert JSON data to plain text for embedding
|
| 33 |
+
documents = []
|
| 34 |
+
for user in json_data:
|
| 35 |
+
tasks_summary = "\n".join(
|
| 36 |
+
[f"Task: {task['title']} | Start: {task['start_date']} | Due: {task['due_date']}"
|
| 37 |
+
for task in user["tasks"]]
|
| 38 |
+
)
|
| 39 |
+
doc_text = f"User: {user['name']} | Email: {user['email']}\nTasks:\n{tasks_summary}"
|
| 40 |
+
documents.append(doc_text)
|
| 41 |
|
| 42 |
# Create index
|
| 43 |
index = VectorStoreIndex.from_documents(
|
|
|
|
| 55 |
message: str,
|
| 56 |
history: list[tuple[str, str]],
|
| 57 |
) -> str:
|
| 58 |
+
"""Process a query using the RAG system."""
|
| 59 |
try:
|
| 60 |
# Get response from the query engine
|
| 61 |
response = query_engine.query(
|
| 62 |
message,
|
|
|
|
| 63 |
)
|
| 64 |
+
return response
|
| 65 |
except Exception as e:
|
| 66 |
return f"Error processing query: {str(e)}"
|
| 67 |
|
| 68 |
+
# Gradio interface (if needed)
|
| 69 |
+
interface = gr.Interface(
|
| 70 |
+
fn=process_query,
|
| 71 |
+
inputs=["text", "state"],
|
| 72 |
+
outputs="text",
|
|
|
|
|
|
|
| 73 |
)
|
| 74 |
|
| 75 |
if __name__ == "__main__":
|
| 76 |
+
interface.launch()
|