Spaces:
Running
Running
adds interface
#4
by
Tonic
- opened
This view is limited to 50 files because it contains too many changes.
See the raw diff here.
- .cursorrules +0 -240
- .env.example +97 -80
- .github/README.md +11 -2
- .github/scripts/deploy_to_hf_space.py +0 -391
- .github/workflows/ci.yml +23 -70
- .github/workflows/deploy-hf-space.yml +0 -47
- .github/workflows/docs.yml +61 -0
- .gitignore +5 -6
- .pre-commit-config.yaml +11 -21
- =0.22.0 +0 -0
- =0.22.0, +0 -0
- AGENTS.txt +0 -236
- LICENSE.md +0 -25
- Makefile +51 -0
- README.md +86 -26
- deployments/README.md +0 -46
- deployments/modal_tts.py +0 -97
- dev/Makefile +51 -0
- docs/api/agents.md +103 -48
- docs/api/models.md +110 -57
- docs/api/orchestrators.md +86 -44
- docs/api/services.md +41 -123
- docs/api/tools.md +29 -57
- docs/architecture/agents.md +18 -123
- docs/architecture/graph-orchestration.md +152 -0
- docs/architecture/graph_orchestration.md +42 -185
- docs/architecture/middleware.md +37 -45
- docs/architecture/orchestrators.md +55 -58
- docs/architecture/services.md +28 -36
- docs/architecture/tools.md +33 -29
- docs/architecture/workflow-diagrams.md +20 -5
- docs/architecture/workflows.md +662 -0
- docs/configuration/CONFIGURATION.md +743 -0
- docs/configuration/index.md +260 -78
- CONTRIBUTING.md → docs/contributing.md +66 -132
- docs/contributing/code-quality.md +30 -73
- docs/contributing/code-style.md +16 -42
- docs/contributing/error-handling.md +15 -4
- docs/contributing/implementation-patterns.md +20 -7
- docs/contributing/index.md +26 -121
- docs/contributing/prompt-engineering.md +10 -0
- docs/contributing/testing.md +12 -66
- docs/getting-started/examples.md +31 -24
- docs/getting-started/installation.md +10 -18
- docs/getting-started/mcp-integration.md +14 -6
- docs/getting-started/quick-start.md +14 -41
- docs/index.md +9 -28
- docs/{LICENSE.md → license.md} +0 -0
- docs/overview/architecture.md +14 -16
- docs/overview/features.md +19 -44
.cursorrules
DELETED
|
@@ -1,240 +0,0 @@
|
|
| 1 |
-
# DeepCritical Project - Cursor Rules
|
| 2 |
-
|
| 3 |
-
## Project-Wide Rules
|
| 4 |
-
|
| 5 |
-
**Architecture**: Multi-agent research system using Pydantic AI for agent orchestration, supporting iterative and deep research patterns. Uses middleware for state management, budget tracking, and workflow coordination.
|
| 6 |
-
|
| 7 |
-
**Type Safety**: ALWAYS use complete type hints. All functions must have parameter and return type annotations. Use `mypy --strict` compliance. Use `TYPE_CHECKING` imports for circular dependencies: `from typing import TYPE_CHECKING; if TYPE_CHECKING: from src.services.embeddings import EmbeddingService`
|
| 8 |
-
|
| 9 |
-
**Async Patterns**: ALL I/O operations must be async (`async def`, `await`). Use `asyncio.gather()` for parallel operations. CPU-bound work must use `run_in_executor()`: `loop = asyncio.get_running_loop(); result = await loop.run_in_executor(None, cpu_bound_function, args)`. Never block the event loop.
|
| 10 |
-
|
| 11 |
-
**Error Handling**: Use custom exceptions from `src/utils/exceptions.py`: `DeepCriticalError`, `SearchError`, `RateLimitError`, `JudgeError`, `ConfigurationError`. Always chain exceptions: `raise SearchError(...) from e`. Log with structlog: `logger.error("Operation failed", error=str(e), context=value)`.
|
| 12 |
-
|
| 13 |
-
**Logging**: Use `structlog` for ALL logging (NOT `print` or `logging`). Import: `import structlog; logger = structlog.get_logger()`. Log with structured data: `logger.info("event", key=value)`. Use appropriate levels: DEBUG, INFO, WARNING, ERROR.
|
| 14 |
-
|
| 15 |
-
**Pydantic Models**: All data exchange uses Pydantic models from `src/utils/models.py`. Models are frozen (`model_config = {"frozen": True}`) for immutability. Use `Field()` with descriptions. Validate with `ge=`, `le=`, `min_length=`, `max_length=` constraints.
|
| 16 |
-
|
| 17 |
-
**Code Style**: Ruff with 100-char line length. Ignore rules: `PLR0913` (too many arguments), `PLR0912` (too many branches), `PLR0911` (too many returns), `PLR2004` (magic values), `PLW0603` (global statement), `PLC0415` (lazy imports).
|
| 18 |
-
|
| 19 |
-
**Docstrings**: Google-style docstrings for all public functions. Include Args, Returns, Raises sections. Use type hints in docstrings only if needed for clarity.
|
| 20 |
-
|
| 21 |
-
**Testing**: Unit tests in `tests/unit/` (mocked, fast). Integration tests in `tests/integration/` (real APIs, marked `@pytest.mark.integration`). Use `respx` for httpx mocking, `pytest-mock` for general mocking.
|
| 22 |
-
|
| 23 |
-
**State Management**: Use `ContextVar` in middleware for thread-safe isolation. Never use global mutable state (except singletons via `@lru_cache`). Use `WorkflowState` from `src/middleware/state_machine.py` for workflow state.
|
| 24 |
-
|
| 25 |
-
**Citation Validation**: ALWAYS validate references before returning reports. Use `validate_references()` from `src/utils/citation_validator.py`. Remove hallucinated citations. Log warnings for removed citations.
|
| 26 |
-
|
| 27 |
-
---
|
| 28 |
-
|
| 29 |
-
## src/agents/ - Agent Implementation Rules
|
| 30 |
-
|
| 31 |
-
**Pattern**: All agents use Pydantic AI `Agent` class. Agents have structured output types (Pydantic models) or return strings. Use factory functions in `src/agent_factory/agents.py` for creation.
|
| 32 |
-
|
| 33 |
-
**Agent Structure**:
|
| 34 |
-
- System prompt as module-level constant (with date injection: `datetime.now().strftime("%Y-%m-%d")`)
|
| 35 |
-
- Agent class with `__init__(model: Any | None = None)`
|
| 36 |
-
- Main method (e.g., `async def evaluate()`, `async def write_report()`)
|
| 37 |
-
- Factory function: `def create_agent_name(model: Any | None = None) -> AgentName`
|
| 38 |
-
|
| 39 |
-
**Model Initialization**: Use `get_model()` from `src/agent_factory/judges.py` if no model provided. Support OpenAI/Anthropic/HF Inference via settings.
|
| 40 |
-
|
| 41 |
-
**Error Handling**: Return fallback values (e.g., `KnowledgeGapOutput(research_complete=False, outstanding_gaps=[...])`) on failure. Log errors with context. Use retry logic (3 retries) in Pydantic AI Agent initialization.
|
| 42 |
-
|
| 43 |
-
**Input Validation**: Validate query/inputs are not empty. Truncate very long inputs with warnings. Handle None values gracefully.
|
| 44 |
-
|
| 45 |
-
**Output Types**: Use structured output types from `src/utils/models.py` (e.g., `KnowledgeGapOutput`, `AgentSelectionPlan`, `ReportDraft`). For text output (writer agents), return `str` directly.
|
| 46 |
-
|
| 47 |
-
**Agent-Specific Rules**:
|
| 48 |
-
- `knowledge_gap.py`: Outputs `KnowledgeGapOutput`. Evaluates research completeness.
|
| 49 |
-
- `tool_selector.py`: Outputs `AgentSelectionPlan`. Selects tools (RAG/web/database).
|
| 50 |
-
- `writer.py`: Returns markdown string. Includes citations in numbered format.
|
| 51 |
-
- `long_writer.py`: Uses `ReportDraft` input/output. Handles section-by-section writing.
|
| 52 |
-
- `proofreader.py`: Takes `ReportDraft`, returns polished markdown.
|
| 53 |
-
- `thinking.py`: Returns observation string from conversation history.
|
| 54 |
-
- `input_parser.py`: Outputs `ParsedQuery` with research mode detection.
|
| 55 |
-
|
| 56 |
-
---
|
| 57 |
-
|
| 58 |
-
## src/tools/ - Search Tool Rules
|
| 59 |
-
|
| 60 |
-
**Protocol**: All tools implement `SearchTool` protocol from `src/tools/base.py`: `name` property and `async def search(query, max_results) -> list[Evidence]`.
|
| 61 |
-
|
| 62 |
-
**Rate Limiting**: Use `@retry` decorator from tenacity: `@retry(stop=stop_after_attempt(3), wait=wait_exponential(...))`. Implement `_rate_limit()` method for APIs with limits. Use shared rate limiters from `src/tools/rate_limiter.py`.
|
| 63 |
-
|
| 64 |
-
**Error Handling**: Raise `SearchError` or `RateLimitError` on failures. Handle HTTP errors (429, 500, timeout). Return empty list on non-critical errors (log warning).
|
| 65 |
-
|
| 66 |
-
**Query Preprocessing**: Use `preprocess_query()` from `src/tools/query_utils.py` to remove noise and expand synonyms.
|
| 67 |
-
|
| 68 |
-
**Evidence Conversion**: Convert API responses to `Evidence` objects with `Citation`. Extract metadata (title, url, date, authors). Set relevance scores (0.0-1.0). Handle missing fields gracefully.
|
| 69 |
-
|
| 70 |
-
**Tool-Specific Rules**:
|
| 71 |
-
- `pubmed.py`: Use NCBI E-utilities (ESearch → EFetch). Rate limit: 0.34s between requests. Parse XML with `xmltodict`. Handle single vs. multiple articles.
|
| 72 |
-
- `clinicaltrials.py`: Use `requests` library (NOT httpx - WAF blocks httpx). Run in thread pool: `await asyncio.to_thread(requests.get, ...)`. Filter: Only interventional studies, active/completed.
|
| 73 |
-
- `europepmc.py`: Handle preprint markers: `[PREPRINT - Not peer-reviewed]`. Build URLs from DOI or PMID.
|
| 74 |
-
- `rag_tool.py`: Wraps `LlamaIndexRAGService`. Returns Evidence from RAG results. Handles ingestion.
|
| 75 |
-
- `search_handler.py`: Orchestrates parallel searches across multiple tools. Uses `asyncio.gather()` with `return_exceptions=True`. Aggregates results into `SearchResult`.
|
| 76 |
-
|
| 77 |
-
---
|
| 78 |
-
|
| 79 |
-
## src/middleware/ - Middleware Rules
|
| 80 |
-
|
| 81 |
-
**State Management**: Use `ContextVar` for thread-safe isolation. `WorkflowState` uses `ContextVar[WorkflowState | None]`. Initialize with `init_workflow_state(embedding_service)`. Access with `get_workflow_state()` (auto-initializes if missing).
|
| 82 |
-
|
| 83 |
-
**WorkflowState**: Tracks `evidence: list[Evidence]`, `conversation: Conversation`, `embedding_service: Any`. Methods: `add_evidence()` (deduplicates by URL), `async search_related()` (semantic search).
|
| 84 |
-
|
| 85 |
-
**WorkflowManager**: Manages parallel research loops. Methods: `add_loop()`, `run_loops_parallel()`, `update_loop_status()`, `sync_loop_evidence_to_state()`. Uses `asyncio.gather()` for parallel execution. Handles errors per loop (don't fail all if one fails).
|
| 86 |
-
|
| 87 |
-
**BudgetTracker**: Tracks tokens, time, iterations per loop and globally. Methods: `create_budget()`, `add_tokens()`, `start_timer()`, `update_timer()`, `increment_iteration()`, `check_budget()`, `can_continue()`. Token estimation: `estimate_tokens(text)` (~4 chars per token), `estimate_llm_call_tokens(prompt, response)`.
|
| 88 |
-
|
| 89 |
-
**Models**: All middleware models in `src/utils/models.py`. `IterationData`, `Conversation`, `ResearchLoop`, `BudgetStatus` are used by middleware.
|
| 90 |
-
|
| 91 |
-
---
|
| 92 |
-
|
| 93 |
-
## src/orchestrator/ - Orchestration Rules
|
| 94 |
-
|
| 95 |
-
**Research Flows**: Two patterns: `IterativeResearchFlow` (single loop) and `DeepResearchFlow` (plan → parallel loops → synthesis). Both support agent chains (`use_graph=False`) and graph execution (`use_graph=True`).
|
| 96 |
-
|
| 97 |
-
**IterativeResearchFlow**: Pattern: Generate observations → Evaluate gaps → Select tools → Execute → Judge → Continue/Complete. Uses `KnowledgeGapAgent`, `ToolSelectorAgent`, `ThinkingAgent`, `WriterAgent`, `JudgeHandler`. Tracks iterations, time, budget.
|
| 98 |
-
|
| 99 |
-
**DeepResearchFlow**: Pattern: Planner → Parallel iterative loops per section → Synthesizer. Uses `PlannerAgent`, `IterativeResearchFlow` (per section), `LongWriterAgent` or `ProofreaderAgent`. Uses `WorkflowManager` for parallel execution.
|
| 100 |
-
|
| 101 |
-
**Graph Orchestrator**: Uses Pydantic AI Graphs (when available) or agent chains (fallback). Routes based on research mode (iterative/deep/auto). Streams `AgentEvent` objects for UI.
|
| 102 |
-
|
| 103 |
-
**State Initialization**: Always call `init_workflow_state()` before running flows. Initialize `BudgetTracker` per loop. Use `WorkflowManager` for parallel coordination.
|
| 104 |
-
|
| 105 |
-
**Event Streaming**: Yield `AgentEvent` objects during execution. Event types: "started", "search_complete", "judge_complete", "hypothesizing", "synthesizing", "complete", "error". Include iteration numbers and data payloads.
|
| 106 |
-
|
| 107 |
-
---
|
| 108 |
-
|
| 109 |
-
## src/services/ - Service Rules
|
| 110 |
-
|
| 111 |
-
**EmbeddingService**: Local sentence-transformers (NO API key required). All operations async-safe via `run_in_executor()`. ChromaDB for vector storage. Deduplication threshold: 0.85 (85% similarity = duplicate).
|
| 112 |
-
|
| 113 |
-
**LlamaIndexRAGService**: Uses OpenAI embeddings (requires `OPENAI_API_KEY`). Methods: `ingest_evidence()`, `retrieve()`, `query()`. Returns documents with metadata (source, title, url, date, authors). Lazy initialization with graceful fallback.
|
| 114 |
-
|
| 115 |
-
**StatisticalAnalyzer**: Generates Python code via LLM. Executes in Modal sandbox (secure, isolated). Library versions pinned in `SANDBOX_LIBRARIES` dict. Returns `AnalysisResult` with verdict (SUPPORTED/REFUTED/INCONCLUSIVE).
|
| 116 |
-
|
| 117 |
-
**Singleton Pattern**: Use `@lru_cache(maxsize=1)` for singletons: `@lru_cache(maxsize=1); def get_service() -> Service: return Service()`. Lazy initialization to avoid requiring dependencies at import time.
|
| 118 |
-
|
| 119 |
-
---
|
| 120 |
-
|
| 121 |
-
## src/utils/ - Utility Rules
|
| 122 |
-
|
| 123 |
-
**Models**: All Pydantic models in `src/utils/models.py`. Use frozen models (`model_config = {"frozen": True}`) except where mutation needed. Use `Field()` with descriptions. Validate with constraints.
|
| 124 |
-
|
| 125 |
-
**Config**: Settings via Pydantic Settings (`src/utils/config.py`). Load from `.env` automatically. Use `settings` singleton: `from src.utils.config import settings`. Validate API keys with properties: `has_openai_key`, `has_anthropic_key`.
|
| 126 |
-
|
| 127 |
-
**Exceptions**: Custom exception hierarchy in `src/utils/exceptions.py`. Base: `DeepCriticalError`. Specific: `SearchError`, `RateLimitError`, `JudgeError`, `ConfigurationError`. Always chain exceptions.
|
| 128 |
-
|
| 129 |
-
**LLM Factory**: Centralized LLM model creation in `src/utils/llm_factory.py`. Supports OpenAI, Anthropic, HF Inference. Use `get_model()` or factory functions. Check requirements before initialization.
|
| 130 |
-
|
| 131 |
-
**Citation Validator**: Use `validate_references()` from `src/utils/citation_validator.py`. Removes hallucinated citations (URLs not in evidence). Logs warnings. Returns validated report string.
|
| 132 |
-
|
| 133 |
-
---
|
| 134 |
-
|
| 135 |
-
## src/orchestrator_factory.py Rules
|
| 136 |
-
|
| 137 |
-
**Purpose**: Factory for creating orchestrators. Supports "simple" (legacy) and "advanced" (magentic) modes. Auto-detects mode based on API key availability.
|
| 138 |
-
|
| 139 |
-
**Pattern**: Lazy import for optional dependencies (`_get_magentic_orchestrator_class()`). Handles `ImportError` gracefully with clear error messages.
|
| 140 |
-
|
| 141 |
-
**Mode Detection**: `_determine_mode()` checks explicit mode or auto-detects: "advanced" if `settings.has_openai_key`, else "simple". Maps "magentic" → "advanced".
|
| 142 |
-
|
| 143 |
-
**Function Signature**: `create_orchestrator(search_handler, judge_handler, config, mode) -> Any`. Simple mode requires handlers. Advanced mode uses MagenticOrchestrator.
|
| 144 |
-
|
| 145 |
-
**Error Handling**: Raise `ValueError` with clear messages if requirements not met. Log mode selection with structlog.
|
| 146 |
-
|
| 147 |
-
---
|
| 148 |
-
|
| 149 |
-
## src/orchestrator_hierarchical.py Rules
|
| 150 |
-
|
| 151 |
-
**Purpose**: Hierarchical orchestrator using middleware and sub-teams. Adapts Magentic ChatAgent to SubIterationTeam protocol.
|
| 152 |
-
|
| 153 |
-
**Pattern**: Uses `SubIterationMiddleware` with `ResearchTeam` and `LLMSubIterationJudge`. Event-driven via callback queue.
|
| 154 |
-
|
| 155 |
-
**State Initialization**: Initialize embedding service with graceful fallback. Use `init_magentic_state()` (deprecated, but kept for compatibility).
|
| 156 |
-
|
| 157 |
-
**Event Streaming**: Uses `asyncio.Queue` for event coordination. Yields `AgentEvent` objects. Handles event callback pattern with `asyncio.wait()`.
|
| 158 |
-
|
| 159 |
-
**Error Handling**: Log errors with context. Yield error events. Process remaining events after task completion.
|
| 160 |
-
|
| 161 |
-
---
|
| 162 |
-
|
| 163 |
-
## src/orchestrator_magentic.py Rules
|
| 164 |
-
|
| 165 |
-
**Purpose**: Magentic-based orchestrator using ChatAgent pattern. Each agent has internal LLM. Manager orchestrates agents.
|
| 166 |
-
|
| 167 |
-
**Pattern**: Uses `MagenticBuilder` with participants (searcher, hypothesizer, judge, reporter). Manager uses `OpenAIChatClient`. Workflow built in `_build_workflow()`.
|
| 168 |
-
|
| 169 |
-
**Event Processing**: `_process_event()` converts Magentic events to `AgentEvent`. Handles: `MagenticOrchestratorMessageEvent`, `MagenticAgentMessageEvent`, `MagenticFinalResultEvent`, `MagenticAgentDeltaEvent`, `WorkflowOutputEvent`.
|
| 170 |
-
|
| 171 |
-
**Text Extraction**: `_extract_text()` defensively extracts text from messages. Priority: `.content` → `.text` → `str(message)`. Handles buggy message objects.
|
| 172 |
-
|
| 173 |
-
**State Initialization**: Initialize embedding service with graceful fallback. Use `init_magentic_state()` (deprecated).
|
| 174 |
-
|
| 175 |
-
**Requirements**: Must call `check_magentic_requirements()` in `__init__`. Requires `agent-framework-core` and OpenAI API key.
|
| 176 |
-
|
| 177 |
-
**Event Types**: Maps agent names to event types: "search" → "search_complete", "judge" → "judge_complete", "hypothes" → "hypothesizing", "report" → "synthesizing".
|
| 178 |
-
|
| 179 |
-
---
|
| 180 |
-
|
| 181 |
-
## src/agent_factory/ - Factory Rules
|
| 182 |
-
|
| 183 |
-
**Pattern**: Factory functions for creating agents and handlers. Lazy initialization for optional dependencies. Support OpenAI/Anthropic/HF Inference.
|
| 184 |
-
|
| 185 |
-
**Judges**: `create_judge_handler()` creates `JudgeHandler` with structured output (`JudgeAssessment`). Supports `MockJudgeHandler`, `HFInferenceJudgeHandler` as fallbacks.
|
| 186 |
-
|
| 187 |
-
**Agents**: Factory functions in `agents.py` for all Pydantic AI agents. Pattern: `create_agent_name(model: Any | None = None) -> AgentName`. Use `get_model()` if model not provided.
|
| 188 |
-
|
| 189 |
-
**Graph Builder**: `graph_builder.py` contains utilities for building research graphs. Supports iterative and deep research graph construction.
|
| 190 |
-
|
| 191 |
-
**Error Handling**: Raise `ConfigurationError` if required API keys missing. Log agent creation. Handle import errors gracefully.
|
| 192 |
-
|
| 193 |
-
---
|
| 194 |
-
|
| 195 |
-
## src/prompts/ - Prompt Rules
|
| 196 |
-
|
| 197 |
-
**Pattern**: System prompts stored as module-level constants. Include date injection: `datetime.now().strftime("%Y-%m-%d")`. Format evidence with truncation (1500 chars per item).
|
| 198 |
-
|
| 199 |
-
**Judge Prompts**: In `judge.py`. Handle empty evidence case separately. Always request structured JSON output.
|
| 200 |
-
|
| 201 |
-
**Hypothesis Prompts**: In `hypothesis.py`. Use diverse evidence selection (MMR algorithm). Sentence-aware truncation.
|
| 202 |
-
|
| 203 |
-
**Report Prompts**: In `report.py`. Include full citation details. Use diverse evidence selection (n=20). Emphasize citation validation rules.
|
| 204 |
-
|
| 205 |
-
---
|
| 206 |
-
|
| 207 |
-
## Testing Rules
|
| 208 |
-
|
| 209 |
-
**Structure**: Unit tests in `tests/unit/` (mocked, fast). Integration tests in `tests/integration/` (real APIs, marked `@pytest.mark.integration`).
|
| 210 |
-
|
| 211 |
-
**Mocking**: Use `respx` for httpx mocking. Use `pytest-mock` for general mocking. Mock LLM calls in unit tests (use `MockJudgeHandler`).
|
| 212 |
-
|
| 213 |
-
**Fixtures**: Common fixtures in `tests/conftest.py`: `mock_httpx_client`, `mock_llm_response`.
|
| 214 |
-
|
| 215 |
-
**Coverage**: Aim for >80% coverage. Test error handling, edge cases, and integration paths.
|
| 216 |
-
|
| 217 |
-
---
|
| 218 |
-
|
| 219 |
-
## File-Specific Agent Rules
|
| 220 |
-
|
| 221 |
-
**knowledge_gap.py**: Outputs `KnowledgeGapOutput`. System prompt evaluates research completeness. Handles conversation history. Returns fallback on error.
|
| 222 |
-
|
| 223 |
-
**writer.py**: Returns markdown string. System prompt includes citation format examples. Validates inputs. Truncates long findings. Retry logic for transient failures.
|
| 224 |
-
|
| 225 |
-
**long_writer.py**: Uses `ReportDraft` input/output. Writes sections iteratively. Reformats references (deduplicates, renumbers). Reformats section headings.
|
| 226 |
-
|
| 227 |
-
**proofreader.py**: Takes `ReportDraft`, returns polished markdown. Removes duplicates. Adds summary. Preserves references.
|
| 228 |
-
|
| 229 |
-
**tool_selector.py**: Outputs `AgentSelectionPlan`. System prompt lists available agents (WebSearchAgent, SiteCrawlerAgent, RAGAgent). Guidelines for when to use each.
|
| 230 |
-
|
| 231 |
-
**thinking.py**: Returns observation string. Generates observations from conversation history. Uses query and background context.
|
| 232 |
-
|
| 233 |
-
**input_parser.py**: Outputs `ParsedQuery`. Detects research mode (iterative/deep). Extracts entities and research questions. Improves/refines query.
|
| 234 |
-
|
| 235 |
-
|
| 236 |
-
|
| 237 |
-
|
| 238 |
-
|
| 239 |
-
|
| 240 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
.env.example
CHANGED
|
@@ -1,83 +1,63 @@
|
|
| 1 |
-
#
|
| 2 |
-
HF_TOKEN=your_huggingface_token_here
|
| 3 |
|
| 4 |
-
#
|
| 5 |
-
|
| 6 |
|
| 7 |
-
#
|
| 8 |
-
|
|
|
|
| 9 |
|
| 10 |
# Model names (optional - sensible defaults set in config.py)
|
| 11 |
-
# ANTHROPIC_MODEL=claude-sonnet-4-5-20250929
|
| 12 |
# OPENAI_MODEL=gpt-5.1
|
|
|
|
| 13 |
|
|
|
|
| 14 |
|
| 15 |
-
#
|
| 16 |
-
# Audio Processing Configuration (TTS)
|
| 17 |
-
# ============================================
|
| 18 |
-
# Kokoro TTS Model Configuration
|
| 19 |
-
TTS_MODEL=hexgrad/Kokoro-82M
|
| 20 |
-
TTS_VOICE=af_heart
|
| 21 |
-
TTS_SPEED=1.0
|
| 22 |
-
TTS_GPU=T4
|
| 23 |
-
TTS_TIMEOUT=60
|
| 24 |
-
|
| 25 |
-
# Available TTS Voices:
|
| 26 |
-
# American English Female: af_heart, af_bella, af_nicole, af_aoede, af_kore, af_sarah, af_nova, af_sky, af_alloy, af_jessica, af_river
|
| 27 |
-
# American English Male: am_michael, am_fenrir, am_puck, am_echo, am_eric, am_liam, am_onyx, am_santa, am_adam
|
| 28 |
-
|
| 29 |
-
# Available GPU Types (Modal):
|
| 30 |
-
# T4 - Cheapest, good for testing (default)
|
| 31 |
-
# A10 - Good balance of cost/performance
|
| 32 |
-
# A100 - Fastest, most expensive
|
| 33 |
-
# L4 - NVIDIA L4 GPU
|
| 34 |
-
# L40S - NVIDIA L40S GPU
|
| 35 |
-
# Note: GPU type is set at function definition time. Changes require app restart.
|
| 36 |
-
|
| 37 |
-
# ============================================
|
| 38 |
-
# Audio Processing Configuration (STT)
|
| 39 |
-
# ============================================
|
| 40 |
-
# Speech-to-Text API Configuration
|
| 41 |
-
STT_API_URL=nvidia/canary-1b-v2
|
| 42 |
-
STT_SOURCE_LANG=English
|
| 43 |
-
STT_TARGET_LANG=English
|
| 44 |
-
|
| 45 |
-
# Available STT Languages:
|
| 46 |
-
# English, Bulgarian, Croatian, Czech, Danish, Dutch, Estonian, Finnish, French, German, Greek, Hungarian, Italian, Latvian, Lithuanian, Maltese, Polish, Portuguese, Romanian, Slovak, Slovenian, Spanish, Swedish, Russian, Ukrainian
|
| 47 |
-
|
| 48 |
-
# ============================================
|
| 49 |
-
# Audio Feature Flags
|
| 50 |
-
# ============================================
|
| 51 |
-
ENABLE_AUDIO_INPUT=true
|
| 52 |
-
ENABLE_AUDIO_OUTPUT=true
|
| 53 |
-
|
| 54 |
-
# ============================================
|
| 55 |
-
# Image OCR Configuration
|
| 56 |
-
# ============================================
|
| 57 |
-
OCR_API_URL=prithivMLmods/Multimodal-OCR3
|
| 58 |
-
ENABLE_IMAGE_INPUT=true
|
| 59 |
-
|
| 60 |
-
# ============== EMBEDDINGS ==============
|
| 61 |
-
|
| 62 |
-
# OpenAI Embedding Model (used if LLM_PROVIDER is openai and performing RAG/Embeddings)
|
| 63 |
-
OPENAI_EMBEDDING_MODEL=text-embedding-3-small
|
| 64 |
-
|
| 65 |
-
# Local Embedding Model (used for local/offline embeddings)
|
| 66 |
-
LOCAL_EMBEDDING_MODEL=sentence-transformers/all-MiniLM-L6-v2
|
| 67 |
-
|
| 68 |
-
# ============== HUGGINGFACE (FREE TIER) ==============
|
| 69 |
-
|
| 70 |
-
# HuggingFace Token - enables Llama 3.1 (best quality free model)
|
| 71 |
# Get yours at: https://huggingface.co/settings/tokens
|
| 72 |
-
#
|
| 73 |
-
# WITHOUT HF_TOKEN: Falls back to ungated models (zephyr-7b-beta)
|
| 74 |
-
# WITH HF_TOKEN: Uses Llama 3.1
|
| 75 |
#
|
| 76 |
# For HuggingFace Spaces deployment:
|
| 77 |
# Set this as a "Secret" in Space Settings -> Variables and secrets
|
| 78 |
# Users/judges don't need their own token - the Space secret is used
|
| 79 |
#
|
| 80 |
HF_TOKEN=hf_your-token-here
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 81 |
|
| 82 |
# ============== AGENT CONFIGURATION ==============
|
| 83 |
|
|
@@ -85,23 +65,60 @@ MAX_ITERATIONS=10
|
|
| 85 |
SEARCH_TIMEOUT=30
|
| 86 |
LOG_LEVEL=INFO
|
| 87 |
|
| 88 |
-
#
|
| 89 |
-
#
|
| 90 |
-
|
| 91 |
-
#
|
| 92 |
-
#
|
| 93 |
-
|
| 94 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 95 |
|
| 96 |
# ============== EXTERNAL SERVICES ==============
|
| 97 |
|
| 98 |
-
# PubMed (optional - higher rate limits)
|
| 99 |
NCBI_API_KEY=your-ncbi-key-here
|
| 100 |
|
| 101 |
-
#
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 102 |
CHROMA_DB_PATH=./chroma_db
|
| 103 |
-
|
| 104 |
-
|
| 105 |
-
|
| 106 |
-
|
| 107 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# ============== LLM CONFIGURATION ==============
|
|
|
|
| 2 |
|
| 3 |
+
# Provider: "openai", "anthropic", or "huggingface"
|
| 4 |
+
LLM_PROVIDER=openai
|
| 5 |
|
| 6 |
+
# API Keys (at least one required for full LLM analysis)
|
| 7 |
+
OPENAI_API_KEY=sk-your-key-here
|
| 8 |
+
ANTHROPIC_API_KEY=sk-ant-your-key-here
|
| 9 |
|
| 10 |
# Model names (optional - sensible defaults set in config.py)
|
|
|
|
| 11 |
# OPENAI_MODEL=gpt-5.1
|
| 12 |
+
# ANTHROPIC_MODEL=claude-sonnet-4-5-20250929
|
| 13 |
|
| 14 |
+
# ============== HUGGINGFACE CONFIGURATION ==============
|
| 15 |
|
| 16 |
+
# HuggingFace Token - enables gated models and higher rate limits
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 17 |
# Get yours at: https://huggingface.co/settings/tokens
|
| 18 |
+
#
|
| 19 |
+
# WITHOUT HF_TOKEN: Falls back to ungated models (zephyr-7b-beta, Qwen2-7B)
|
| 20 |
+
# WITH HF_TOKEN: Uses gated models (Llama 3.1, Gemma-2) via inference providers
|
| 21 |
#
|
| 22 |
# For HuggingFace Spaces deployment:
|
| 23 |
# Set this as a "Secret" in Space Settings -> Variables and secrets
|
| 24 |
# Users/judges don't need their own token - the Space secret is used
|
| 25 |
#
|
| 26 |
HF_TOKEN=hf_your-token-here
|
| 27 |
+
# Alternative: HUGGINGFACE_API_KEY (same as HF_TOKEN)
|
| 28 |
+
|
| 29 |
+
# Default HuggingFace model for inference (gated, requires auth)
|
| 30 |
+
# Can be overridden in UI dropdown
|
| 31 |
+
# Latest reasoning models: Qwen3-Next-80B-A3B-Thinking, Qwen3-Next-80B-A3B-Instruct, Llama-3.3-70B-Instruct
|
| 32 |
+
HUGGINGFACE_MODEL=Qwen/Qwen3-Next-80B-A3B-Thinking
|
| 33 |
+
|
| 34 |
+
# Fallback models for HuggingFace Inference API (comma-separated)
|
| 35 |
+
# Models are tried in order until one succeeds
|
| 36 |
+
# Format: model1,model2,model3
|
| 37 |
+
# Latest reasoning models first, then reliable fallbacks
|
| 38 |
+
# Reasoning models: Qwen3-Next (thinking/instruct), Llama-3.3-70B, Qwen3-235B
|
| 39 |
+
# Fallbacks: Llama-3.1-8B, Zephyr-7B (ungated), Qwen2-7B (ungated)
|
| 40 |
+
HF_FALLBACK_MODELS=Qwen/Qwen3-Next-80B-A3B-Thinking,Qwen/Qwen3-Next-80B-A3B-Instruct,meta-llama/Llama-3.3-70B-Instruct,meta-llama/Llama-3.1-8B-Instruct,HuggingFaceH4/zephyr-7b-beta,Qwen/Qwen2-7B-Instruct
|
| 41 |
+
|
| 42 |
+
# Override model/provider selection (optional, usually set via UI)
|
| 43 |
+
# HF_MODEL=Qwen/Qwen3-Next-80B-A3B-Thinking
|
| 44 |
+
# HF_PROVIDER=hyperbolic
|
| 45 |
+
|
| 46 |
+
# ============== EMBEDDING CONFIGURATION ==============
|
| 47 |
+
|
| 48 |
+
# Embedding Provider: "openai", "local", or "huggingface"
|
| 49 |
+
# Default: "local" (no API key required)
|
| 50 |
+
EMBEDDING_PROVIDER=local
|
| 51 |
+
|
| 52 |
+
# OpenAI Embedding Model (used if EMBEDDING_PROVIDER=openai)
|
| 53 |
+
OPENAI_EMBEDDING_MODEL=text-embedding-3-small
|
| 54 |
+
|
| 55 |
+
# Local Embedding Model (sentence-transformers, used if EMBEDDING_PROVIDER=local)
|
| 56 |
+
# BAAI/bge-small-en-v1.5 is newer, faster, and better than all-MiniLM-L6-v2
|
| 57 |
+
LOCAL_EMBEDDING_MODEL=BAAI/bge-small-en-v1.5
|
| 58 |
+
|
| 59 |
+
# HuggingFace Embedding Model (used if EMBEDDING_PROVIDER=huggingface)
|
| 60 |
+
HUGGINGFACE_EMBEDDING_MODEL=sentence-transformers/all-MiniLM-L6-v2
|
| 61 |
|
| 62 |
# ============== AGENT CONFIGURATION ==============
|
| 63 |
|
|
|
|
| 65 |
SEARCH_TIMEOUT=30
|
| 66 |
LOG_LEVEL=INFO
|
| 67 |
|
| 68 |
+
# Graph-based execution (experimental)
|
| 69 |
+
# USE_GRAPH_EXECUTION=false
|
| 70 |
+
|
| 71 |
+
# Budget & Rate Limiting
|
| 72 |
+
# DEFAULT_TOKEN_LIMIT=100000
|
| 73 |
+
# DEFAULT_TIME_LIMIT_MINUTES=10
|
| 74 |
+
# DEFAULT_ITERATIONS_LIMIT=10
|
| 75 |
+
|
| 76 |
+
# ============== WEB SEARCH CONFIGURATION ==============
|
| 77 |
+
|
| 78 |
+
# Web Search Provider: "serper", "searchxng", "brave", "tavily", or "duckduckgo"
|
| 79 |
+
# Default: "duckduckgo" (no API key required)
|
| 80 |
+
WEB_SEARCH_PROVIDER=duckduckgo
|
| 81 |
+
|
| 82 |
+
# Serper API Key (for Google search via Serper)
|
| 83 |
+
# SERPER_API_KEY=your-serper-key-here
|
| 84 |
+
|
| 85 |
+
# SearchXNG Host URL (for self-hosted search)
|
| 86 |
+
# SEARCHXNG_HOST=http://localhost:8080
|
| 87 |
+
|
| 88 |
+
# Brave Search API Key
|
| 89 |
+
# BRAVE_API_KEY=your-brave-key-here
|
| 90 |
+
|
| 91 |
+
# Tavily API Key
|
| 92 |
+
# TAVILY_API_KEY=your-tavily-key-here
|
| 93 |
|
| 94 |
# ============== EXTERNAL SERVICES ==============
|
| 95 |
|
| 96 |
+
# PubMed (optional - higher rate limits: 10 req/sec vs 3 req/sec)
|
| 97 |
NCBI_API_KEY=your-ncbi-key-here
|
| 98 |
|
| 99 |
+
# Modal (optional - for secure code execution sandbox)
|
| 100 |
+
# MODAL_TOKEN_ID=your-modal-token-id
|
| 101 |
+
# MODAL_TOKEN_SECRET=your-modal-token-secret
|
| 102 |
+
|
| 103 |
+
# ============== VECTOR DATABASE (ChromaDB) ==============
|
| 104 |
+
|
| 105 |
+
# ChromaDB storage path
|
| 106 |
CHROMA_DB_PATH=./chroma_db
|
| 107 |
+
|
| 108 |
+
# Persist ChromaDB to disk (default: true)
|
| 109 |
+
# CHROMA_DB_PERSIST=true
|
| 110 |
+
|
| 111 |
+
# Remote ChromaDB server (optional)
|
| 112 |
+
# CHROMA_DB_HOST=localhost
|
| 113 |
+
# CHROMA_DB_PORT=8000
|
| 114 |
+
|
| 115 |
+
# ============== RAG SERVICE CONFIGURATION ==============
|
| 116 |
+
|
| 117 |
+
# ChromaDB collection name for RAG
|
| 118 |
+
# RAG_COLLECTION_NAME=deepcritical_evidence
|
| 119 |
+
|
| 120 |
+
# Number of top results to retrieve from RAG
|
| 121 |
+
# RAG_SIMILARITY_TOP_K=5
|
| 122 |
+
|
| 123 |
+
# Automatically ingest evidence into RAG
|
| 124 |
+
# RAG_AUTO_INGEST=true
|
.github/README.md
CHANGED
|
@@ -3,7 +3,8 @@
|
|
| 3 |
> **You are reading the Github README!**
|
| 4 |
>
|
| 5 |
> - 📚 **Documentation**: See our [technical documentation](https://deepcritical.github.io/GradioDemo/) for detailed information
|
| 6 |
-
> - 📖 **Demo README**: Check out the [Demo README](..README.md) for
|
|
|
|
| 7 |
|
| 8 |
|
| 9 |
<div align="center">
|
|
@@ -37,7 +38,15 @@ gradio run "src/app.py"
|
|
| 37 |
|
| 38 |
Open your browser to `http://localhost:7860`.
|
| 39 |
|
| 40 |
-
### 3.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 41 |
|
| 42 |
This application exposes a Model Context Protocol (MCP) server, allowing you to use its search tools directly from Claude Desktop or other MCP clients.
|
| 43 |
|
|
|
|
| 3 |
> **You are reading the Github README!**
|
| 4 |
>
|
| 5 |
> - 📚 **Documentation**: See our [technical documentation](https://deepcritical.github.io/GradioDemo/) for detailed information
|
| 6 |
+
> - 📖 **Demo README**: Check out the [Demo README](..README.md) for setup, configuration, and contribution guidelines
|
| 7 |
+
> - 🏆 **Hackathon Submission**: Keep reading below for more information about our MCP Hackathon submission
|
| 8 |
|
| 9 |
|
| 10 |
<div align="center">
|
|
|
|
| 38 |
|
| 39 |
Open your browser to `http://localhost:7860`.
|
| 40 |
|
| 41 |
+
### 3. Authentication (Optional)
|
| 42 |
+
|
| 43 |
+
**HuggingFace OAuth Login**:
|
| 44 |
+
- Click the "Sign in with HuggingFace" button at the top of the app
|
| 45 |
+
- Your HuggingFace API token will be automatically used for AI inference
|
| 46 |
+
- No need to manually enter API keys when logged in
|
| 47 |
+
- OAuth token is used only for the current session and never stored
|
| 48 |
+
|
| 49 |
+
### 4. Connect via MCP
|
| 50 |
|
| 51 |
This application exposes a Model Context Protocol (MCP) server, allowing you to use its search tools directly from Claude Desktop or other MCP clients.
|
| 52 |
|
.github/scripts/deploy_to_hf_space.py
DELETED
|
@@ -1,391 +0,0 @@
|
|
| 1 |
-
"""Deploy repository to Hugging Face Space, excluding unnecessary files."""
|
| 2 |
-
|
| 3 |
-
import os
|
| 4 |
-
import shutil
|
| 5 |
-
import subprocess
|
| 6 |
-
import tempfile
|
| 7 |
-
from pathlib import Path
|
| 8 |
-
|
| 9 |
-
from huggingface_hub import HfApi
|
| 10 |
-
|
| 11 |
-
|
| 12 |
-
def get_excluded_dirs() -> set[str]:
|
| 13 |
-
"""Get set of directory names to exclude from deployment."""
|
| 14 |
-
return {
|
| 15 |
-
"docs",
|
| 16 |
-
"dev",
|
| 17 |
-
"folder",
|
| 18 |
-
"site",
|
| 19 |
-
"tests", # Optional - can be included if desired
|
| 20 |
-
"examples", # Optional - can be included if desired
|
| 21 |
-
".git",
|
| 22 |
-
".github",
|
| 23 |
-
"__pycache__",
|
| 24 |
-
".pytest_cache",
|
| 25 |
-
".mypy_cache",
|
| 26 |
-
".ruff_cache",
|
| 27 |
-
".venv",
|
| 28 |
-
"venv",
|
| 29 |
-
"env",
|
| 30 |
-
"ENV",
|
| 31 |
-
"node_modules",
|
| 32 |
-
".cursor",
|
| 33 |
-
"reference_repos",
|
| 34 |
-
"burner_docs",
|
| 35 |
-
"chroma_db",
|
| 36 |
-
"logs",
|
| 37 |
-
"build",
|
| 38 |
-
"dist",
|
| 39 |
-
".eggs",
|
| 40 |
-
"htmlcov",
|
| 41 |
-
"hf_space", # Exclude the cloned HF Space directory itself
|
| 42 |
-
}
|
| 43 |
-
|
| 44 |
-
|
| 45 |
-
def get_excluded_files() -> set[str]:
|
| 46 |
-
"""Get set of file names to exclude from deployment."""
|
| 47 |
-
return {
|
| 48 |
-
".pre-commit-config.yaml",
|
| 49 |
-
"mkdocs.yml",
|
| 50 |
-
"uv.lock",
|
| 51 |
-
"AGENTS.txt",
|
| 52 |
-
".env",
|
| 53 |
-
".env.local",
|
| 54 |
-
"*.local",
|
| 55 |
-
".DS_Store",
|
| 56 |
-
"Thumbs.db",
|
| 57 |
-
"*.log",
|
| 58 |
-
".coverage",
|
| 59 |
-
"coverage.xml",
|
| 60 |
-
}
|
| 61 |
-
|
| 62 |
-
|
| 63 |
-
def should_exclude(path: Path, excluded_dirs: set[str], excluded_files: set[str]) -> bool:
|
| 64 |
-
"""Check if a path should be excluded from deployment."""
|
| 65 |
-
# Check if any parent directory is excluded
|
| 66 |
-
for parent in path.parents:
|
| 67 |
-
if parent.name in excluded_dirs:
|
| 68 |
-
return True
|
| 69 |
-
|
| 70 |
-
# Check if the path itself is a directory that should be excluded
|
| 71 |
-
if path.is_dir() and path.name in excluded_dirs:
|
| 72 |
-
return True
|
| 73 |
-
|
| 74 |
-
# Check if the file name matches excluded patterns
|
| 75 |
-
if path.is_file():
|
| 76 |
-
# Check exact match
|
| 77 |
-
if path.name in excluded_files:
|
| 78 |
-
return True
|
| 79 |
-
# Check pattern matches (simple wildcard support)
|
| 80 |
-
for pattern in excluded_files:
|
| 81 |
-
if "*" in pattern:
|
| 82 |
-
# Simple pattern matching (e.g., "*.log")
|
| 83 |
-
suffix = pattern.replace("*", "")
|
| 84 |
-
if path.name.endswith(suffix):
|
| 85 |
-
return True
|
| 86 |
-
|
| 87 |
-
return False
|
| 88 |
-
|
| 89 |
-
|
| 90 |
-
def deploy_to_hf_space() -> None:
|
| 91 |
-
"""Deploy repository to Hugging Face Space.
|
| 92 |
-
|
| 93 |
-
Supports both user and organization Spaces:
|
| 94 |
-
- User Space: username/space-name
|
| 95 |
-
- Organization Space: organization-name/space-name
|
| 96 |
-
|
| 97 |
-
Works with both classic tokens and fine-grained tokens.
|
| 98 |
-
"""
|
| 99 |
-
# Get configuration from environment variables
|
| 100 |
-
hf_token = os.getenv("HF_TOKEN")
|
| 101 |
-
hf_username = os.getenv("HF_USERNAME") # Can be username or organization name
|
| 102 |
-
space_name = os.getenv("HF_SPACE_NAME")
|
| 103 |
-
|
| 104 |
-
# Check which variables are missing and provide helpful error message
|
| 105 |
-
missing = []
|
| 106 |
-
if not hf_token:
|
| 107 |
-
missing.append("HF_TOKEN (should be in repository secrets)")
|
| 108 |
-
if not hf_username:
|
| 109 |
-
missing.append("HF_USERNAME (should be in repository variables)")
|
| 110 |
-
if not space_name:
|
| 111 |
-
missing.append("HF_SPACE_NAME (should be in repository variables)")
|
| 112 |
-
|
| 113 |
-
if missing:
|
| 114 |
-
raise ValueError(
|
| 115 |
-
f"Missing required environment variables: {', '.join(missing)}\n"
|
| 116 |
-
f"Please configure:\n"
|
| 117 |
-
f" - HF_TOKEN in Settings > Secrets and variables > Actions > Secrets\n"
|
| 118 |
-
f" - HF_USERNAME in Settings > Secrets and variables > Actions > Variables\n"
|
| 119 |
-
f" - HF_SPACE_NAME in Settings > Secrets and variables > Actions > Variables"
|
| 120 |
-
)
|
| 121 |
-
|
| 122 |
-
# HF_USERNAME can be either a username or organization name
|
| 123 |
-
# Format: {username|organization}/{space_name}
|
| 124 |
-
repo_id = f"{hf_username}/{space_name}"
|
| 125 |
-
local_dir = "hf_space"
|
| 126 |
-
|
| 127 |
-
print(f"🚀 Deploying to Hugging Face Space: {repo_id}")
|
| 128 |
-
|
| 129 |
-
# Initialize HF API
|
| 130 |
-
api = HfApi(token=hf_token)
|
| 131 |
-
|
| 132 |
-
# Create Space if it doesn't exist
|
| 133 |
-
try:
|
| 134 |
-
api.repo_info(repo_id=repo_id, repo_type="space", token=hf_token)
|
| 135 |
-
print(f"✅ Space exists: {repo_id}")
|
| 136 |
-
except Exception:
|
| 137 |
-
print(f"⚠️ Space does not exist, creating: {repo_id}")
|
| 138 |
-
# Create new repository
|
| 139 |
-
# Note: For organizations, repo_id should be "org/space-name"
|
| 140 |
-
# For users, repo_id should be "username/space-name"
|
| 141 |
-
api.create_repo(
|
| 142 |
-
repo_id=repo_id, # Full repo_id including owner
|
| 143 |
-
repo_type="space",
|
| 144 |
-
space_sdk="gradio",
|
| 145 |
-
token=hf_token,
|
| 146 |
-
exist_ok=True,
|
| 147 |
-
)
|
| 148 |
-
print(f"✅ Created new Space: {repo_id}")
|
| 149 |
-
|
| 150 |
-
# Configure Git credential helper for authentication
|
| 151 |
-
# This is needed for Git LFS to work properly with fine-grained tokens
|
| 152 |
-
print("🔐 Configuring Git credentials...")
|
| 153 |
-
|
| 154 |
-
# Use Git credential store to store the token
|
| 155 |
-
# This allows Git LFS to authenticate properly
|
| 156 |
-
temp_dir = Path(tempfile.gettempdir())
|
| 157 |
-
credential_store = temp_dir / ".git-credentials-hf"
|
| 158 |
-
|
| 159 |
-
# Write credentials in the format: https://username:[email protected]
|
| 160 |
-
credential_store.write_text(
|
| 161 |
-
f"https://{hf_username}:{hf_token}@huggingface.co\n", encoding="utf-8"
|
| 162 |
-
)
|
| 163 |
-
try:
|
| 164 |
-
credential_store.chmod(0o600) # Secure permissions (Unix only)
|
| 165 |
-
except OSError:
|
| 166 |
-
# Windows doesn't support chmod, skip
|
| 167 |
-
pass
|
| 168 |
-
|
| 169 |
-
# Configure Git to use the credential store
|
| 170 |
-
subprocess.run(
|
| 171 |
-
["git", "config", "--global", "credential.helper", f"store --file={credential_store}"],
|
| 172 |
-
check=True,
|
| 173 |
-
capture_output=True,
|
| 174 |
-
)
|
| 175 |
-
|
| 176 |
-
# Also set environment variable for Git LFS
|
| 177 |
-
os.environ["GIT_CREDENTIAL_HELPER"] = f"store --file={credential_store}"
|
| 178 |
-
|
| 179 |
-
# Clone repository using git
|
| 180 |
-
# Use the token in the URL for initial clone, but LFS will use credential store
|
| 181 |
-
space_url = f"https://{hf_username}:{hf_token}@huggingface.co/spaces/{repo_id}"
|
| 182 |
-
|
| 183 |
-
if Path(local_dir).exists():
|
| 184 |
-
print(f"🧹 Removing existing {local_dir} directory...")
|
| 185 |
-
shutil.rmtree(local_dir)
|
| 186 |
-
|
| 187 |
-
print("📥 Cloning Space repository...")
|
| 188 |
-
try:
|
| 189 |
-
result = subprocess.run(
|
| 190 |
-
["git", "clone", space_url, local_dir],
|
| 191 |
-
check=True,
|
| 192 |
-
capture_output=True,
|
| 193 |
-
text=True,
|
| 194 |
-
)
|
| 195 |
-
print("✅ Cloned Space repository")
|
| 196 |
-
|
| 197 |
-
# After clone, configure the remote to use credential helper
|
| 198 |
-
# This ensures future operations (like push) use the credential store
|
| 199 |
-
os.chdir(local_dir)
|
| 200 |
-
subprocess.run(
|
| 201 |
-
["git", "remote", "set-url", "origin", f"https://huggingface.co/spaces/{repo_id}"],
|
| 202 |
-
check=True,
|
| 203 |
-
capture_output=True,
|
| 204 |
-
)
|
| 205 |
-
os.chdir("..")
|
| 206 |
-
|
| 207 |
-
except subprocess.CalledProcessError as e:
|
| 208 |
-
error_msg = e.stderr if e.stderr else e.stdout if e.stdout else "Unknown error"
|
| 209 |
-
print(f"❌ Failed to clone Space repository: {error_msg}")
|
| 210 |
-
|
| 211 |
-
# Try alternative: clone with LFS skip, then fetch LFS files separately
|
| 212 |
-
print("🔄 Trying alternative clone method (skip LFS during clone)...")
|
| 213 |
-
try:
|
| 214 |
-
env = os.environ.copy()
|
| 215 |
-
env["GIT_LFS_SKIP_SMUDGE"] = "1" # Skip LFS during clone
|
| 216 |
-
|
| 217 |
-
subprocess.run(
|
| 218 |
-
["git", "clone", space_url, local_dir],
|
| 219 |
-
check=True,
|
| 220 |
-
capture_output=True,
|
| 221 |
-
text=True,
|
| 222 |
-
env=env,
|
| 223 |
-
)
|
| 224 |
-
print("✅ Cloned Space repository (LFS skipped)")
|
| 225 |
-
|
| 226 |
-
# Configure remote
|
| 227 |
-
os.chdir(local_dir)
|
| 228 |
-
subprocess.run(
|
| 229 |
-
["git", "remote", "set-url", "origin", f"https://huggingface.co/spaces/{repo_id}"],
|
| 230 |
-
check=True,
|
| 231 |
-
capture_output=True,
|
| 232 |
-
)
|
| 233 |
-
|
| 234 |
-
# Try to fetch LFS files with proper authentication
|
| 235 |
-
print("📥 Fetching LFS files...")
|
| 236 |
-
subprocess.run(
|
| 237 |
-
["git", "lfs", "pull"],
|
| 238 |
-
check=False, # Don't fail if LFS pull fails - we'll continue without LFS files
|
| 239 |
-
capture_output=True,
|
| 240 |
-
text=True,
|
| 241 |
-
)
|
| 242 |
-
os.chdir("..")
|
| 243 |
-
print("✅ Repository cloned (LFS files may be incomplete, but deployment can continue)")
|
| 244 |
-
except subprocess.CalledProcessError as e2:
|
| 245 |
-
error_msg2 = e2.stderr if e2.stderr else e2.stdout if e2.stdout else "Unknown error"
|
| 246 |
-
print(f"❌ Alternative clone method also failed: {error_msg2}")
|
| 247 |
-
raise RuntimeError(f"Git clone failed: {error_msg}") from e
|
| 248 |
-
|
| 249 |
-
# Get exclusion sets
|
| 250 |
-
excluded_dirs = get_excluded_dirs()
|
| 251 |
-
excluded_files = get_excluded_files()
|
| 252 |
-
|
| 253 |
-
# Remove all existing files in HF Space (except .git)
|
| 254 |
-
print("🧹 Cleaning existing files...")
|
| 255 |
-
for item in Path(local_dir).iterdir():
|
| 256 |
-
if item.name == ".git":
|
| 257 |
-
continue
|
| 258 |
-
if item.is_dir():
|
| 259 |
-
shutil.rmtree(item)
|
| 260 |
-
else:
|
| 261 |
-
item.unlink()
|
| 262 |
-
|
| 263 |
-
# Copy files from repository root
|
| 264 |
-
print("📦 Copying files...")
|
| 265 |
-
repo_root = Path(".")
|
| 266 |
-
files_copied = 0
|
| 267 |
-
dirs_copied = 0
|
| 268 |
-
|
| 269 |
-
for item in repo_root.rglob("*"):
|
| 270 |
-
# Skip if in .git directory
|
| 271 |
-
if ".git" in item.parts:
|
| 272 |
-
continue
|
| 273 |
-
|
| 274 |
-
# Skip if in hf_space directory (the cloned Space directory)
|
| 275 |
-
if "hf_space" in item.parts:
|
| 276 |
-
continue
|
| 277 |
-
|
| 278 |
-
# Skip if should be excluded
|
| 279 |
-
if should_exclude(item, excluded_dirs, excluded_files):
|
| 280 |
-
continue
|
| 281 |
-
|
| 282 |
-
# Calculate relative path
|
| 283 |
-
try:
|
| 284 |
-
rel_path = item.relative_to(repo_root)
|
| 285 |
-
except ValueError:
|
| 286 |
-
# Item is outside repo root, skip
|
| 287 |
-
continue
|
| 288 |
-
|
| 289 |
-
# Skip if in excluded directory
|
| 290 |
-
if any(part in excluded_dirs for part in rel_path.parts):
|
| 291 |
-
continue
|
| 292 |
-
|
| 293 |
-
# Destination path
|
| 294 |
-
dest_path = Path(local_dir) / rel_path
|
| 295 |
-
|
| 296 |
-
# Create parent directories
|
| 297 |
-
dest_path.parent.mkdir(parents=True, exist_ok=True)
|
| 298 |
-
|
| 299 |
-
# Copy file or directory
|
| 300 |
-
if item.is_file():
|
| 301 |
-
shutil.copy2(item, dest_path)
|
| 302 |
-
files_copied += 1
|
| 303 |
-
elif item.is_dir():
|
| 304 |
-
# Directory will be created by parent mkdir, but we track it
|
| 305 |
-
dirs_copied += 1
|
| 306 |
-
|
| 307 |
-
print(f"✅ Copied {files_copied} files and {dirs_copied} directories")
|
| 308 |
-
|
| 309 |
-
# Commit and push changes using git
|
| 310 |
-
print("💾 Committing changes...")
|
| 311 |
-
|
| 312 |
-
# Change to the Space directory
|
| 313 |
-
original_cwd = os.getcwd()
|
| 314 |
-
os.chdir(local_dir)
|
| 315 |
-
|
| 316 |
-
try:
|
| 317 |
-
# Configure git user (required for commit)
|
| 318 |
-
subprocess.run(
|
| 319 |
-
["git", "config", "user.name", "github-actions[bot]"],
|
| 320 |
-
check=True,
|
| 321 |
-
capture_output=True,
|
| 322 |
-
)
|
| 323 |
-
subprocess.run(
|
| 324 |
-
["git", "config", "user.email", "github-actions[bot]@users.noreply.github.com"],
|
| 325 |
-
check=True,
|
| 326 |
-
capture_output=True,
|
| 327 |
-
)
|
| 328 |
-
|
| 329 |
-
# Add all files
|
| 330 |
-
subprocess.run(
|
| 331 |
-
["git", "add", "."],
|
| 332 |
-
check=True,
|
| 333 |
-
capture_output=True,
|
| 334 |
-
)
|
| 335 |
-
|
| 336 |
-
# Check if there are changes to commit
|
| 337 |
-
result = subprocess.run(
|
| 338 |
-
["git", "status", "--porcelain"],
|
| 339 |
-
check=False,
|
| 340 |
-
capture_output=True,
|
| 341 |
-
text=True,
|
| 342 |
-
)
|
| 343 |
-
|
| 344 |
-
if result.stdout.strip():
|
| 345 |
-
# There are changes, commit and push
|
| 346 |
-
subprocess.run(
|
| 347 |
-
["git", "commit", "-m", "Deploy to Hugging Face Space [skip ci]"],
|
| 348 |
-
check=True,
|
| 349 |
-
capture_output=True,
|
| 350 |
-
)
|
| 351 |
-
print("📤 Pushing to Hugging Face Space...")
|
| 352 |
-
# Ensure remote URL uses credential helper (not token in URL)
|
| 353 |
-
subprocess.run(
|
| 354 |
-
["git", "remote", "set-url", "origin", f"https://huggingface.co/spaces/{repo_id}"],
|
| 355 |
-
check=True,
|
| 356 |
-
capture_output=True,
|
| 357 |
-
)
|
| 358 |
-
subprocess.run(
|
| 359 |
-
["git", "push"],
|
| 360 |
-
check=True,
|
| 361 |
-
capture_output=True,
|
| 362 |
-
)
|
| 363 |
-
print("✅ Deployment complete!")
|
| 364 |
-
else:
|
| 365 |
-
print("ℹ️ No changes to commit (repository is up to date)")
|
| 366 |
-
except subprocess.CalledProcessError as e:
|
| 367 |
-
error_msg = e.stderr if e.stderr else (e.stdout if e.stdout else str(e))
|
| 368 |
-
if isinstance(error_msg, bytes):
|
| 369 |
-
error_msg = error_msg.decode("utf-8", errors="replace")
|
| 370 |
-
if "nothing to commit" in error_msg.lower():
|
| 371 |
-
print("ℹ️ No changes to commit (repository is up to date)")
|
| 372 |
-
else:
|
| 373 |
-
print(f"⚠️ Error during git operations: {error_msg}")
|
| 374 |
-
raise RuntimeError(f"Git operation failed: {error_msg}") from e
|
| 375 |
-
finally:
|
| 376 |
-
# Return to original directory
|
| 377 |
-
os.chdir(original_cwd)
|
| 378 |
-
|
| 379 |
-
# Clean up credential store for security
|
| 380 |
-
try:
|
| 381 |
-
if credential_store.exists():
|
| 382 |
-
credential_store.unlink()
|
| 383 |
-
except Exception:
|
| 384 |
-
# Ignore cleanup errors
|
| 385 |
-
pass
|
| 386 |
-
|
| 387 |
-
print(f"🎉 Successfully deployed to: https://huggingface.co/spaces/{repo_id}")
|
| 388 |
-
|
| 389 |
-
|
| 390 |
-
if __name__ == "__main__":
|
| 391 |
-
deploy_to_hf_space()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
.github/workflows/ci.yml
CHANGED
|
@@ -2,9 +2,9 @@ name: CI
|
|
| 2 |
|
| 3 |
on:
|
| 4 |
push:
|
| 5 |
-
branches: [main, dev
|
| 6 |
pull_request:
|
| 7 |
-
branches: [main, dev
|
| 8 |
|
| 9 |
jobs:
|
| 10 |
test:
|
|
@@ -16,6 +16,11 @@ jobs:
|
|
| 16 |
steps:
|
| 17 |
- uses: actions/checkout@v4
|
| 18 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 19 |
- name: Set up Python ${{ matrix.python-version }}
|
| 20 |
uses: actions/setup-python@v5
|
| 21 |
with:
|
|
@@ -23,105 +28,53 @@ jobs:
|
|
| 23 |
|
| 24 |
- name: Install dependencies
|
| 25 |
run: |
|
| 26 |
-
|
| 27 |
-
pip install -e ".[dev]"
|
| 28 |
|
| 29 |
- name: Lint with ruff
|
| 30 |
-
run: |
|
| 31 |
-
ruff check . --exclude tests
|
| 32 |
-
ruff format --check . --exclude tests
|
| 33 |
continue-on-error: true
|
|
|
|
|
|
|
|
|
|
| 34 |
|
| 35 |
- name: Type check with mypy
|
| 36 |
-
run: |
|
| 37 |
-
mypy src
|
| 38 |
continue-on-error: true
|
| 39 |
-
|
| 40 |
-
- name: Install embedding dependencies
|
| 41 |
run: |
|
| 42 |
-
|
| 43 |
|
| 44 |
-
- name: Run unit tests (
|
| 45 |
env:
|
| 46 |
HF_TOKEN: ${{ secrets.HF_TOKEN }}
|
|
|
|
| 47 |
run: |
|
| 48 |
-
pytest tests/unit/ -v -m "not openai and not embedding_provider" --tb=short -p no:logfire --cov --cov-branch --cov-report=xml
|
| 49 |
|
| 50 |
- name: Run local embeddings tests
|
| 51 |
env:
|
| 52 |
HF_TOKEN: ${{ secrets.HF_TOKEN }}
|
|
|
|
| 53 |
run: |
|
| 54 |
-
pytest tests/ -v -m "local_embeddings" --tb=short -p no:logfire --cov --cov-branch --cov-report=xml --cov-
|
| 55 |
continue-on-error: true # Allow failures if dependencies not available
|
| 56 |
|
| 57 |
- name: Run HuggingFace integration tests
|
| 58 |
env:
|
| 59 |
HF_TOKEN: ${{ secrets.HF_TOKEN }}
|
|
|
|
| 60 |
run: |
|
| 61 |
-
pytest tests/integration/ -v -m "huggingface and not embedding_provider" --tb=short -p no:logfire --cov --cov-branch --cov-report=xml --cov-
|
| 62 |
continue-on-error: true # Allow failures if HF_TOKEN not set
|
| 63 |
|
| 64 |
-
- name: Run non-OpenAI integration tests (excluding embedding providers)
|
| 65 |
env:
|
| 66 |
HF_TOKEN: ${{ secrets.HF_TOKEN }}
|
|
|
|
| 67 |
run: |
|
| 68 |
-
pytest tests/integration/ -v -m "integration and not openai and not embedding_provider" --tb=short -p no:logfire --cov --cov-branch --cov-report=xml --cov-
|
| 69 |
continue-on-error: true # Allow failures if dependencies not available
|
| 70 |
|
| 71 |
- name: Upload coverage reports to Codecov
|
| 72 |
uses: codecov/codecov-action@v5
|
|
|
|
| 73 |
with:
|
| 74 |
token: ${{ secrets.CODECOV_TOKEN }}
|
| 75 |
slug: DeepCritical/GradioDemo
|
| 76 |
-
files: ./coverage.xml
|
| 77 |
-
fail_ci_if_error: false
|
| 78 |
-
continue-on-error: true
|
| 79 |
-
|
| 80 |
-
docs:
|
| 81 |
-
runs-on: ubuntu-latest
|
| 82 |
-
permissions:
|
| 83 |
-
contents: write
|
| 84 |
-
if: github.event_name == 'push' && (github.ref == 'refs/heads/main' || github.ref == 'refs/heads/dev' || github.ref == 'refs/heads/develop')
|
| 85 |
-
steps:
|
| 86 |
-
- uses: actions/checkout@v4
|
| 87 |
-
with:
|
| 88 |
-
fetch-depth: 0
|
| 89 |
-
|
| 90 |
-
- name: Set up Python
|
| 91 |
-
uses: actions/setup-python@v5
|
| 92 |
-
with:
|
| 93 |
-
python-version: '3.11'
|
| 94 |
-
|
| 95 |
-
- name: Install uv
|
| 96 |
-
uses: astral-sh/setup-uv@v5
|
| 97 |
-
with:
|
| 98 |
-
version: "latest"
|
| 99 |
-
|
| 100 |
-
- name: Install dependencies
|
| 101 |
-
run: |
|
| 102 |
-
uv sync --extra dev
|
| 103 |
-
|
| 104 |
-
- name: Configure Git
|
| 105 |
-
run: |
|
| 106 |
-
git config user.name "github-actions[bot]"
|
| 107 |
-
git config user.email "github-actions[bot]@users.noreply.github.com"
|
| 108 |
-
git remote set-url origin https://x-access-token:${{ secrets.GITHUB_TOKEN }}@github.com/${{ github.repository }}.git
|
| 109 |
-
|
| 110 |
-
- name: Deploy to GitHub Pages
|
| 111 |
-
run: |
|
| 112 |
-
# mkdocs gh-deploy automatically creates .nojekyll, but let's verify
|
| 113 |
-
uv run mkdocs gh-deploy --force --message "Deploy docs [skip ci]" --strict
|
| 114 |
-
# Verify .nojekyll was created in gh-pages branch
|
| 115 |
-
git fetch origin gh-pages:gh-pages || true
|
| 116 |
-
git checkout gh-pages || true
|
| 117 |
-
if [ -f .nojekyll ]; then
|
| 118 |
-
echo "✓ .nojekyll file exists"
|
| 119 |
-
else
|
| 120 |
-
echo "⚠ .nojekyll file missing, creating it..."
|
| 121 |
-
touch .nojekyll
|
| 122 |
-
git add .nojekyll
|
| 123 |
-
git commit -m "Add .nojekyll to disable Jekyll [skip ci]" || true
|
| 124 |
-
git push origin gh-pages || true
|
| 125 |
-
fi
|
| 126 |
-
env:
|
| 127 |
-
GITHUB_TOKEN: ${{ secrets.GITHUB_TOKEN }}
|
|
|
|
| 2 |
|
| 3 |
on:
|
| 4 |
push:
|
| 5 |
+
branches: [main, dev]
|
| 6 |
pull_request:
|
| 7 |
+
branches: [main, dev]
|
| 8 |
|
| 9 |
jobs:
|
| 10 |
test:
|
|
|
|
| 16 |
steps:
|
| 17 |
- uses: actions/checkout@v4
|
| 18 |
|
| 19 |
+
- name: Install uv
|
| 20 |
+
uses: astral-sh/setup-uv@v5
|
| 21 |
+
with:
|
| 22 |
+
version: "latest"
|
| 23 |
+
|
| 24 |
- name: Set up Python ${{ matrix.python-version }}
|
| 25 |
uses: actions/setup-python@v5
|
| 26 |
with:
|
|
|
|
| 28 |
|
| 29 |
- name: Install dependencies
|
| 30 |
run: |
|
| 31 |
+
uv sync --extra dev
|
|
|
|
| 32 |
|
| 33 |
- name: Lint with ruff
|
|
|
|
|
|
|
|
|
|
| 34 |
continue-on-error: true
|
| 35 |
+
run: |
|
| 36 |
+
uv run ruff check . --exclude tests --exclude reference_repos
|
| 37 |
+
uv run ruff format --check . --exclude tests --exclude reference_repos
|
| 38 |
|
| 39 |
- name: Type check with mypy
|
|
|
|
|
|
|
| 40 |
continue-on-error: true
|
|
|
|
|
|
|
| 41 |
run: |
|
| 42 |
+
uv run mypy src --ignore-missing-imports
|
| 43 |
|
| 44 |
+
- name: Run unit tests (No OpenAI/Anthropic, HuggingFace only)
|
| 45 |
env:
|
| 46 |
HF_TOKEN: ${{ secrets.HF_TOKEN }}
|
| 47 |
+
LLM_PROVIDER: huggingface
|
| 48 |
run: |
|
| 49 |
+
uv run pytest tests/unit/ -v -m "not openai and not anthropic and not embedding_provider" --tb=short -p no:logfire --cov --cov-branch --cov-report=xml
|
| 50 |
|
| 51 |
- name: Run local embeddings tests
|
| 52 |
env:
|
| 53 |
HF_TOKEN: ${{ secrets.HF_TOKEN }}
|
| 54 |
+
LLM_PROVIDER: huggingface
|
| 55 |
run: |
|
| 56 |
+
uv run pytest tests/ -v -m "local_embeddings" --tb=short -p no:logfire --cov --cov-branch --cov-report=xml --cov-append || true
|
| 57 |
continue-on-error: true # Allow failures if dependencies not available
|
| 58 |
|
| 59 |
- name: Run HuggingFace integration tests
|
| 60 |
env:
|
| 61 |
HF_TOKEN: ${{ secrets.HF_TOKEN }}
|
| 62 |
+
LLM_PROVIDER: huggingface
|
| 63 |
run: |
|
| 64 |
+
uv run pytest tests/integration/ -v -m "huggingface and not embedding_provider" --tb=short -p no:logfire --cov --cov-branch --cov-report=xml --cov-append || true
|
| 65 |
continue-on-error: true # Allow failures if HF_TOKEN not set
|
| 66 |
|
| 67 |
+
- name: Run non-OpenAI/Anthropic integration tests (excluding embedding providers)
|
| 68 |
env:
|
| 69 |
HF_TOKEN: ${{ secrets.HF_TOKEN }}
|
| 70 |
+
LLM_PROVIDER: huggingface
|
| 71 |
run: |
|
| 72 |
+
uv run pytest tests/integration/ -v -m "integration and not openai and not anthropic and not embedding_provider" --tb=short -p no:logfire --cov --cov-branch --cov-report=xml --cov-append || true
|
| 73 |
continue-on-error: true # Allow failures if dependencies not available
|
| 74 |
|
| 75 |
- name: Upload coverage reports to Codecov
|
| 76 |
uses: codecov/codecov-action@v5
|
| 77 |
+
continue-on-error: true
|
| 78 |
with:
|
| 79 |
token: ${{ secrets.CODECOV_TOKEN }}
|
| 80 |
slug: DeepCritical/GradioDemo
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
.github/workflows/deploy-hf-space.yml
DELETED
|
@@ -1,47 +0,0 @@
|
|
| 1 |
-
name: Deploy to Hugging Face Space
|
| 2 |
-
|
| 3 |
-
on:
|
| 4 |
-
push:
|
| 5 |
-
branches: [main]
|
| 6 |
-
workflow_dispatch: # Allow manual triggering
|
| 7 |
-
|
| 8 |
-
jobs:
|
| 9 |
-
deploy:
|
| 10 |
-
runs-on: ubuntu-latest
|
| 11 |
-
permissions:
|
| 12 |
-
contents: read
|
| 13 |
-
# No write permissions needed for GitHub repo (we're pushing to HF Space)
|
| 14 |
-
|
| 15 |
-
steps:
|
| 16 |
-
- name: Checkout Repository
|
| 17 |
-
uses: actions/checkout@v4
|
| 18 |
-
with:
|
| 19 |
-
fetch-depth: 0
|
| 20 |
-
|
| 21 |
-
- name: Set up Python
|
| 22 |
-
uses: actions/setup-python@v5
|
| 23 |
-
with:
|
| 24 |
-
python-version: '3.11'
|
| 25 |
-
|
| 26 |
-
- name: Install dependencies
|
| 27 |
-
run: |
|
| 28 |
-
pip install --upgrade pip
|
| 29 |
-
pip install huggingface-hub
|
| 30 |
-
|
| 31 |
-
- name: Deploy to Hugging Face Space
|
| 32 |
-
env:
|
| 33 |
-
# Token from secrets (sensitive data)
|
| 34 |
-
HF_TOKEN: ${{ secrets.HF_TOKEN }}
|
| 35 |
-
# Username/Organization from repository variables (non-sensitive)
|
| 36 |
-
HF_USERNAME: ${{ vars.HF_USERNAME }}
|
| 37 |
-
# Space name from repository variables (non-sensitive)
|
| 38 |
-
HF_SPACE_NAME: ${{ vars.HF_SPACE_NAME }}
|
| 39 |
-
run: |
|
| 40 |
-
python .github/scripts/deploy_to_hf_space.py
|
| 41 |
-
|
| 42 |
-
- name: Verify deployment
|
| 43 |
-
if: success()
|
| 44 |
-
run: |
|
| 45 |
-
echo "✅ Deployment completed successfully!"
|
| 46 |
-
echo "Space URL: https://huggingface.co/spaces/${{ vars.HF_USERNAME }}/${{ vars.HF_SPACE_NAME }}"
|
| 47 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
.github/workflows/docs.yml
ADDED
|
@@ -0,0 +1,61 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
name: Documentation
|
| 2 |
+
|
| 3 |
+
on:
|
| 4 |
+
push:
|
| 5 |
+
branches:
|
| 6 |
+
- main
|
| 7 |
+
- dev
|
| 8 |
+
paths:
|
| 9 |
+
- 'docs/**'
|
| 10 |
+
- 'mkdocs.yml'
|
| 11 |
+
- '.github/workflows/docs.yml'
|
| 12 |
+
pull_request:
|
| 13 |
+
branches:
|
| 14 |
+
- main
|
| 15 |
+
- dev
|
| 16 |
+
paths:
|
| 17 |
+
- 'docs/**'
|
| 18 |
+
- 'mkdocs.yml'
|
| 19 |
+
- '.github/workflows/docs.yml'
|
| 20 |
+
workflow_dispatch:
|
| 21 |
+
|
| 22 |
+
permissions:
|
| 23 |
+
contents: write
|
| 24 |
+
|
| 25 |
+
jobs:
|
| 26 |
+
build:
|
| 27 |
+
runs-on: ubuntu-latest
|
| 28 |
+
steps:
|
| 29 |
+
- uses: actions/checkout@v4
|
| 30 |
+
|
| 31 |
+
- name: Set up Python
|
| 32 |
+
uses: actions/setup-python@v5
|
| 33 |
+
with:
|
| 34 |
+
python-version: '3.11'
|
| 35 |
+
|
| 36 |
+
- name: Install uv
|
| 37 |
+
uses: astral-sh/setup-uv@v5
|
| 38 |
+
with:
|
| 39 |
+
version: "latest"
|
| 40 |
+
|
| 41 |
+
- name: Install dependencies
|
| 42 |
+
run: |
|
| 43 |
+
uv sync --extra dev
|
| 44 |
+
|
| 45 |
+
- name: Build documentation
|
| 46 |
+
run: |
|
| 47 |
+
uv run mkdocs build --strict
|
| 48 |
+
|
| 49 |
+
- name: Deploy to GitHub Pages
|
| 50 |
+
if: (github.ref == 'refs/heads/main' || github.ref == 'refs/heads/dev') && github.event_name == 'push'
|
| 51 |
+
uses: peaceiris/actions-gh-pages@v3
|
| 52 |
+
with:
|
| 53 |
+
github_token: ${{ secrets.GITHUB_TOKEN }}
|
| 54 |
+
publish_dir: ./site
|
| 55 |
+
publish_branch: dev
|
| 56 |
+
cname: false
|
| 57 |
+
keep_files: true
|
| 58 |
+
|
| 59 |
+
|
| 60 |
+
|
| 61 |
+
|
.gitignore
CHANGED
|
@@ -1,7 +1,10 @@
|
|
|
|
|
|
|
|
| 1 |
folder/
|
| 2 |
site/
|
| 3 |
.cursor/
|
| 4 |
.ruff_cache/
|
|
|
|
| 5 |
# Python
|
| 6 |
__pycache__/
|
| 7 |
*.py[cod]
|
|
@@ -57,9 +60,6 @@ reference_repos/DeepCritical/
|
|
| 57 |
# Keep the README in reference_repos
|
| 58 |
!reference_repos/README.md
|
| 59 |
|
| 60 |
-
# Development directory
|
| 61 |
-
dev/
|
| 62 |
-
|
| 63 |
# OS
|
| 64 |
.DS_Store
|
| 65 |
Thumbs.db
|
|
@@ -72,13 +72,12 @@ logs/
|
|
| 72 |
.pytest_cache/
|
| 73 |
.mypy_cache/
|
| 74 |
.coverage
|
|
|
|
|
|
|
| 75 |
htmlcov/
|
| 76 |
-
test_output*.txt
|
| 77 |
|
| 78 |
# Database files
|
| 79 |
chroma_db/
|
| 80 |
*.sqlite3
|
| 81 |
|
| 82 |
-
|
| 83 |
# Trigger rebuild Wed Nov 26 17:51:41 EST 2025
|
| 84 |
-
.env
|
|
|
|
| 1 |
+
=0.22.0
|
| 2 |
+
=0.22.0,
|
| 3 |
folder/
|
| 4 |
site/
|
| 5 |
.cursor/
|
| 6 |
.ruff_cache/
|
| 7 |
+
docs/contributing/
|
| 8 |
# Python
|
| 9 |
__pycache__/
|
| 10 |
*.py[cod]
|
|
|
|
| 60 |
# Keep the README in reference_repos
|
| 61 |
!reference_repos/README.md
|
| 62 |
|
|
|
|
|
|
|
|
|
|
| 63 |
# OS
|
| 64 |
.DS_Store
|
| 65 |
Thumbs.db
|
|
|
|
| 72 |
.pytest_cache/
|
| 73 |
.mypy_cache/
|
| 74 |
.coverage
|
| 75 |
+
.coverage.*
|
| 76 |
+
coverage.xml
|
| 77 |
htmlcov/
|
|
|
|
| 78 |
|
| 79 |
# Database files
|
| 80 |
chroma_db/
|
| 81 |
*.sqlite3
|
| 82 |
|
|
|
|
| 83 |
# Trigger rebuild Wed Nov 26 17:51:41 EST 2025
|
|
|
.pre-commit-config.yaml
CHANGED
|
@@ -1,20 +1,20 @@
|
|
| 1 |
repos:
|
| 2 |
- repo: https://github.com/astral-sh/ruff-pre-commit
|
| 3 |
-
rev: v0.
|
| 4 |
hooks:
|
| 5 |
- id: ruff
|
| 6 |
-
args: [--fix, --exclude, tests]
|
| 7 |
exclude: ^reference_repos/
|
| 8 |
- id: ruff-format
|
| 9 |
-
args: [--exclude, tests]
|
| 10 |
exclude: ^reference_repos/
|
| 11 |
|
| 12 |
- repo: https://github.com/pre-commit/mirrors-mypy
|
| 13 |
-
rev: v1.
|
| 14 |
hooks:
|
| 15 |
- id: mypy
|
| 16 |
files: ^src/
|
| 17 |
-
exclude: ^folder
|
| 18 |
additional_dependencies:
|
| 19 |
- pydantic>=2.7
|
| 20 |
- pydantic-settings>=2.2
|
|
@@ -31,14 +31,9 @@ repos:
|
|
| 31 |
types: [python]
|
| 32 |
args: [
|
| 33 |
"run",
|
| 34 |
-
"
|
| 35 |
-
"
|
| 36 |
-
"
|
| 37 |
-
"-m",
|
| 38 |
-
"not openai and not embedding_provider",
|
| 39 |
-
"--tb=short",
|
| 40 |
-
"-p",
|
| 41 |
-
"no:logfire",
|
| 42 |
]
|
| 43 |
pass_filenames: false
|
| 44 |
always_run: true
|
|
@@ -50,14 +45,9 @@ repos:
|
|
| 50 |
types: [python]
|
| 51 |
args: [
|
| 52 |
"run",
|
| 53 |
-
"
|
| 54 |
-
"
|
| 55 |
-
"
|
| 56 |
-
"-m",
|
| 57 |
-
"local_embeddings",
|
| 58 |
-
"--tb=short",
|
| 59 |
-
"-p",
|
| 60 |
-
"no:logfire",
|
| 61 |
]
|
| 62 |
pass_filenames: false
|
| 63 |
always_run: true
|
|
|
|
| 1 |
repos:
|
| 2 |
- repo: https://github.com/astral-sh/ruff-pre-commit
|
| 3 |
+
rev: v0.14.7 # Compatible with ruff>=0.14.6 (matches CI)
|
| 4 |
hooks:
|
| 5 |
- id: ruff
|
| 6 |
+
args: [--fix, --exclude, tests, --exclude, reference_repos]
|
| 7 |
exclude: ^reference_repos/
|
| 8 |
- id: ruff-format
|
| 9 |
+
args: [--exclude, tests, --exclude, reference_repos]
|
| 10 |
exclude: ^reference_repos/
|
| 11 |
|
| 12 |
- repo: https://github.com/pre-commit/mirrors-mypy
|
| 13 |
+
rev: v1.18.2 # Matches CI version mypy>=1.18.2
|
| 14 |
hooks:
|
| 15 |
- id: mypy
|
| 16 |
files: ^src/
|
| 17 |
+
exclude: ^folder
|
| 18 |
additional_dependencies:
|
| 19 |
- pydantic>=2.7
|
| 20 |
- pydantic-settings>=2.2
|
|
|
|
| 31 |
types: [python]
|
| 32 |
args: [
|
| 33 |
"run",
|
| 34 |
+
"python",
|
| 35 |
+
".pre-commit-hooks/run_pytest_with_sync.py",
|
| 36 |
+
"unit",
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 37 |
]
|
| 38 |
pass_filenames: false
|
| 39 |
always_run: true
|
|
|
|
| 45 |
types: [python]
|
| 46 |
args: [
|
| 47 |
"run",
|
| 48 |
+
"python",
|
| 49 |
+
".pre-commit-hooks/run_pytest_with_sync.py",
|
| 50 |
+
"embeddings",
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 51 |
]
|
| 52 |
pass_filenames: false
|
| 53 |
always_run: true
|
=0.22.0
ADDED
|
File without changes
|
=0.22.0,
ADDED
|
File without changes
|
AGENTS.txt
DELETED
|
@@ -1,236 +0,0 @@
|
|
| 1 |
-
# DeepCritical Project - Rules
|
| 2 |
-
|
| 3 |
-
## Project-Wide Rules
|
| 4 |
-
|
| 5 |
-
**Architecture**: Multi-agent research system using Pydantic AI for agent orchestration, supporting iterative and deep research patterns. Uses middleware for state management, budget tracking, and workflow coordination.
|
| 6 |
-
|
| 7 |
-
**Type Safety**: ALWAYS use complete type hints. All functions must have parameter and return type annotations. Use `mypy --strict` compliance. Use `TYPE_CHECKING` imports for circular dependencies: `from typing import TYPE_CHECKING; if TYPE_CHECKING: from src.services.embeddings import EmbeddingService`
|
| 8 |
-
|
| 9 |
-
**Async Patterns**: ALL I/O operations must be async (`async def`, `await`). Use `asyncio.gather()` for parallel operations. CPU-bound work must use `run_in_executor()`: `loop = asyncio.get_running_loop(); result = await loop.run_in_executor(None, cpu_bound_function, args)`. Never block the event loop.
|
| 10 |
-
|
| 11 |
-
**Error Handling**: Use custom exceptions from `src/utils/exceptions.py`: `DeepCriticalError`, `SearchError`, `RateLimitError`, `JudgeError`, `ConfigurationError`. Always chain exceptions: `raise SearchError(...) from e`. Log with structlog: `logger.error("Operation failed", error=str(e), context=value)`.
|
| 12 |
-
|
| 13 |
-
**Logging**: Use `structlog` for ALL logging (NOT `print` or `logging`). Import: `import structlog; logger = structlog.get_logger()`. Log with structured data: `logger.info("event", key=value)`. Use appropriate levels: DEBUG, INFO, WARNING, ERROR.
|
| 14 |
-
|
| 15 |
-
**Pydantic Models**: All data exchange uses Pydantic models from `src/utils/models.py`. Models are frozen (`model_config = {"frozen": True}`) for immutability. Use `Field()` with descriptions. Validate with `ge=`, `le=`, `min_length=`, `max_length=` constraints.
|
| 16 |
-
|
| 17 |
-
**Code Style**: Ruff with 100-char line length. Ignore rules: `PLR0913` (too many arguments), `PLR0912` (too many branches), `PLR0911` (too many returns), `PLR2004` (magic values), `PLW0603` (global statement), `PLC0415` (lazy imports).
|
| 18 |
-
|
| 19 |
-
**Docstrings**: Google-style docstrings for all public functions. Include Args, Returns, Raises sections. Use type hints in docstrings only if needed for clarity.
|
| 20 |
-
|
| 21 |
-
**Testing**: Unit tests in `tests/unit/` (mocked, fast). Integration tests in `tests/integration/` (real APIs, marked `@pytest.mark.integration`). Use `respx` for httpx mocking, `pytest-mock` for general mocking.
|
| 22 |
-
|
| 23 |
-
**State Management**: Use `ContextVar` in middleware for thread-safe isolation. Never use global mutable state (except singletons via `@lru_cache`). Use `WorkflowState` from `src/middleware/state_machine.py` for workflow state.
|
| 24 |
-
|
| 25 |
-
**Citation Validation**: ALWAYS validate references before returning reports. Use `validate_references()` from `src/utils/citation_validator.py`. Remove hallucinated citations. Log warnings for removed citations.
|
| 26 |
-
|
| 27 |
-
---
|
| 28 |
-
|
| 29 |
-
## src/agents/ - Agent Implementation Rules
|
| 30 |
-
|
| 31 |
-
**Pattern**: All agents use Pydantic AI `Agent` class. Agents have structured output types (Pydantic models) or return strings. Use factory functions in `src/agent_factory/agents.py` for creation.
|
| 32 |
-
|
| 33 |
-
**Agent Structure**:
|
| 34 |
-
- System prompt as module-level constant (with date injection: `datetime.now().strftime("%Y-%m-%d")`)
|
| 35 |
-
- Agent class with `__init__(model: Any | None = None)`
|
| 36 |
-
- Main method (e.g., `async def evaluate()`, `async def write_report()`)
|
| 37 |
-
- Factory function: `def create_agent_name(model: Any | None = None) -> AgentName`
|
| 38 |
-
|
| 39 |
-
**Model Initialization**: Use `get_model()` from `src/agent_factory/judges.py` if no model provided. Support OpenAI/Anthropic/HF Inference via settings.
|
| 40 |
-
|
| 41 |
-
**Error Handling**: Return fallback values (e.g., `KnowledgeGapOutput(research_complete=False, outstanding_gaps=[...])`) on failure. Log errors with context. Use retry logic (3 retries) in Pydantic AI Agent initialization.
|
| 42 |
-
|
| 43 |
-
**Input Validation**: Validate query/inputs are not empty. Truncate very long inputs with warnings. Handle None values gracefully.
|
| 44 |
-
|
| 45 |
-
**Output Types**: Use structured output types from `src/utils/models.py` (e.g., `KnowledgeGapOutput`, `AgentSelectionPlan`, `ReportDraft`). For text output (writer agents), return `str` directly.
|
| 46 |
-
|
| 47 |
-
**Agent-Specific Rules**:
|
| 48 |
-
- `knowledge_gap.py`: Outputs `KnowledgeGapOutput`. Evaluates research completeness.
|
| 49 |
-
- `tool_selector.py`: Outputs `AgentSelectionPlan`. Selects tools (RAG/web/database).
|
| 50 |
-
- `writer.py`: Returns markdown string. Includes citations in numbered format.
|
| 51 |
-
- `long_writer.py`: Uses `ReportDraft` input/output. Handles section-by-section writing.
|
| 52 |
-
- `proofreader.py`: Takes `ReportDraft`, returns polished markdown.
|
| 53 |
-
- `thinking.py`: Returns observation string from conversation history.
|
| 54 |
-
- `input_parser.py`: Outputs `ParsedQuery` with research mode detection.
|
| 55 |
-
|
| 56 |
-
---
|
| 57 |
-
|
| 58 |
-
## src/tools/ - Search Tool Rules
|
| 59 |
-
|
| 60 |
-
**Protocol**: All tools implement `SearchTool` protocol from `src/tools/base.py`: `name` property and `async def search(query, max_results) -> list[Evidence]`.
|
| 61 |
-
|
| 62 |
-
**Rate Limiting**: Use `@retry` decorator from tenacity: `@retry(stop=stop_after_attempt(3), wait=wait_exponential(...))`. Implement `_rate_limit()` method for APIs with limits. Use shared rate limiters from `src/tools/rate_limiter.py`.
|
| 63 |
-
|
| 64 |
-
**Error Handling**: Raise `SearchError` or `RateLimitError` on failures. Handle HTTP errors (429, 500, timeout). Return empty list on non-critical errors (log warning).
|
| 65 |
-
|
| 66 |
-
**Query Preprocessing**: Use `preprocess_query()` from `src/tools/query_utils.py` to remove noise and expand synonyms.
|
| 67 |
-
|
| 68 |
-
**Evidence Conversion**: Convert API responses to `Evidence` objects with `Citation`. Extract metadata (title, url, date, authors). Set relevance scores (0.0-1.0). Handle missing fields gracefully.
|
| 69 |
-
|
| 70 |
-
**Tool-Specific Rules**:
|
| 71 |
-
- `pubmed.py`: Use NCBI E-utilities (ESearch → EFetch). Rate limit: 0.34s between requests. Parse XML with `xmltodict`. Handle single vs. multiple articles.
|
| 72 |
-
- `clinicaltrials.py`: Use `requests` library (NOT httpx - WAF blocks httpx). Run in thread pool: `await asyncio.to_thread(requests.get, ...)`. Filter: Only interventional studies, active/completed.
|
| 73 |
-
- `europepmc.py`: Handle preprint markers: `[PREPRINT - Not peer-reviewed]`. Build URLs from DOI or PMID.
|
| 74 |
-
- `rag_tool.py`: Wraps `LlamaIndexRAGService`. Returns Evidence from RAG results. Handles ingestion.
|
| 75 |
-
- `search_handler.py`: Orchestrates parallel searches across multiple tools. Uses `asyncio.gather()` with `return_exceptions=True`. Aggregates results into `SearchResult`.
|
| 76 |
-
|
| 77 |
-
---
|
| 78 |
-
|
| 79 |
-
## src/middleware/ - Middleware Rules
|
| 80 |
-
|
| 81 |
-
**State Management**: Use `ContextVar` for thread-safe isolation. `WorkflowState` uses `ContextVar[WorkflowState | None]`. Initialize with `init_workflow_state(embedding_service)`. Access with `get_workflow_state()` (auto-initializes if missing).
|
| 82 |
-
|
| 83 |
-
**WorkflowState**: Tracks `evidence: list[Evidence]`, `conversation: Conversation`, `embedding_service: Any`. Methods: `add_evidence()` (deduplicates by URL), `async search_related()` (semantic search).
|
| 84 |
-
|
| 85 |
-
**WorkflowManager**: Manages parallel research loops. Methods: `add_loop()`, `run_loops_parallel()`, `update_loop_status()`, `sync_loop_evidence_to_state()`. Uses `asyncio.gather()` for parallel execution. Handles errors per loop (don't fail all if one fails).
|
| 86 |
-
|
| 87 |
-
**BudgetTracker**: Tracks tokens, time, iterations per loop and globally. Methods: `create_budget()`, `add_tokens()`, `start_timer()`, `update_timer()`, `increment_iteration()`, `check_budget()`, `can_continue()`. Token estimation: `estimate_tokens(text)` (~4 chars per token), `estimate_llm_call_tokens(prompt, response)`.
|
| 88 |
-
|
| 89 |
-
**Models**: All middleware models in `src/utils/models.py`. `IterationData`, `Conversation`, `ResearchLoop`, `BudgetStatus` are used by middleware.
|
| 90 |
-
|
| 91 |
-
---
|
| 92 |
-
|
| 93 |
-
## src/orchestrator/ - Orchestration Rules
|
| 94 |
-
|
| 95 |
-
**Research Flows**: Two patterns: `IterativeResearchFlow` (single loop) and `DeepResearchFlow` (plan → parallel loops → synthesis). Both support agent chains (`use_graph=False`) and graph execution (`use_graph=True`).
|
| 96 |
-
|
| 97 |
-
**IterativeResearchFlow**: Pattern: Generate observations → Evaluate gaps → Select tools → Execute → Judge → Continue/Complete. Uses `KnowledgeGapAgent`, `ToolSelectorAgent`, `ThinkingAgent`, `WriterAgent`, `JudgeHandler`. Tracks iterations, time, budget.
|
| 98 |
-
|
| 99 |
-
**DeepResearchFlow**: Pattern: Planner → Parallel iterative loops per section → Synthesizer. Uses `PlannerAgent`, `IterativeResearchFlow` (per section), `LongWriterAgent` or `ProofreaderAgent`. Uses `WorkflowManager` for parallel execution.
|
| 100 |
-
|
| 101 |
-
**Graph Orchestrator**: Uses Pydantic AI Graphs (when available) or agent chains (fallback). Routes based on research mode (iterative/deep/auto). Streams `AgentEvent` objects for UI.
|
| 102 |
-
|
| 103 |
-
**State Initialization**: Always call `init_workflow_state()` before running flows. Initialize `BudgetTracker` per loop. Use `WorkflowManager` for parallel coordination.
|
| 104 |
-
|
| 105 |
-
**Event Streaming**: Yield `AgentEvent` objects during execution. Event types: "started", "search_complete", "judge_complete", "hypothesizing", "synthesizing", "complete", "error". Include iteration numbers and data payloads.
|
| 106 |
-
|
| 107 |
-
---
|
| 108 |
-
|
| 109 |
-
## src/services/ - Service Rules
|
| 110 |
-
|
| 111 |
-
**EmbeddingService**: Local sentence-transformers (NO API key required). All operations async-safe via `run_in_executor()`. ChromaDB for vector storage. Deduplication threshold: 0.85 (85% similarity = duplicate).
|
| 112 |
-
|
| 113 |
-
**LlamaIndexRAGService**: Uses OpenAI embeddings (requires `OPENAI_API_KEY`). Methods: `ingest_evidence()`, `retrieve()`, `query()`. Returns documents with metadata (source, title, url, date, authors). Lazy initialization with graceful fallback.
|
| 114 |
-
|
| 115 |
-
**StatisticalAnalyzer**: Generates Python code via LLM. Executes in Modal sandbox (secure, isolated). Library versions pinned in `SANDBOX_LIBRARIES` dict. Returns `AnalysisResult` with verdict (SUPPORTED/REFUTED/INCONCLUSIVE).
|
| 116 |
-
|
| 117 |
-
**Singleton Pattern**: Use `@lru_cache(maxsize=1)` for singletons: `@lru_cache(maxsize=1); def get_service() -> Service: return Service()`. Lazy initialization to avoid requiring dependencies at import time.
|
| 118 |
-
|
| 119 |
-
---
|
| 120 |
-
|
| 121 |
-
## src/utils/ - Utility Rules
|
| 122 |
-
|
| 123 |
-
**Models**: All Pydantic models in `src/utils/models.py`. Use frozen models (`model_config = {"frozen": True}`) except where mutation needed. Use `Field()` with descriptions. Validate with constraints.
|
| 124 |
-
|
| 125 |
-
**Config**: Settings via Pydantic Settings (`src/utils/config.py`). Load from `.env` automatically. Use `settings` singleton: `from src.utils.config import settings`. Validate API keys with properties: `has_openai_key`, `has_anthropic_key`.
|
| 126 |
-
|
| 127 |
-
**Exceptions**: Custom exception hierarchy in `src/utils/exceptions.py`. Base: `DeepCriticalError`. Specific: `SearchError`, `RateLimitError`, `JudgeError`, `ConfigurationError`. Always chain exceptions.
|
| 128 |
-
|
| 129 |
-
**LLM Factory**: Centralized LLM model creation in `src/utils/llm_factory.py`. Supports OpenAI, Anthropic, HF Inference. Use `get_model()` or factory functions. Check requirements before initialization.
|
| 130 |
-
|
| 131 |
-
**Citation Validator**: Use `validate_references()` from `src/utils/citation_validator.py`. Removes hallucinated citations (URLs not in evidence). Logs warnings. Returns validated report string.
|
| 132 |
-
|
| 133 |
-
---
|
| 134 |
-
|
| 135 |
-
## src/orchestrator_factory.py Rules
|
| 136 |
-
|
| 137 |
-
**Purpose**: Factory for creating orchestrators. Supports "simple" (legacy) and "advanced" (magentic) modes. Auto-detects mode based on API key availability.
|
| 138 |
-
|
| 139 |
-
**Pattern**: Lazy import for optional dependencies (`_get_magentic_orchestrator_class()`). Handles `ImportError` gracefully with clear error messages.
|
| 140 |
-
|
| 141 |
-
**Mode Detection**: `_determine_mode()` checks explicit mode or auto-detects: "advanced" if `settings.has_openai_key`, else "simple". Maps "magentic" → "advanced".
|
| 142 |
-
|
| 143 |
-
**Function Signature**: `create_orchestrator(search_handler, judge_handler, config, mode) -> Any`. Simple mode requires handlers. Advanced mode uses MagenticOrchestrator.
|
| 144 |
-
|
| 145 |
-
**Error Handling**: Raise `ValueError` with clear messages if requirements not met. Log mode selection with structlog.
|
| 146 |
-
|
| 147 |
-
---
|
| 148 |
-
|
| 149 |
-
## src/orchestrator_hierarchical.py Rules
|
| 150 |
-
|
| 151 |
-
**Purpose**: Hierarchical orchestrator using middleware and sub-teams. Adapts Magentic ChatAgent to SubIterationTeam protocol.
|
| 152 |
-
|
| 153 |
-
**Pattern**: Uses `SubIterationMiddleware` with `ResearchTeam` and `LLMSubIterationJudge`. Event-driven via callback queue.
|
| 154 |
-
|
| 155 |
-
**State Initialization**: Initialize embedding service with graceful fallback. Use `init_magentic_state()` (deprecated, but kept for compatibility).
|
| 156 |
-
|
| 157 |
-
**Event Streaming**: Uses `asyncio.Queue` for event coordination. Yields `AgentEvent` objects. Handles event callback pattern with `asyncio.wait()`.
|
| 158 |
-
|
| 159 |
-
**Error Handling**: Log errors with context. Yield error events. Process remaining events after task completion.
|
| 160 |
-
|
| 161 |
-
---
|
| 162 |
-
|
| 163 |
-
## src/orchestrator_magentic.py Rules
|
| 164 |
-
|
| 165 |
-
**Purpose**: Magentic-based orchestrator using ChatAgent pattern. Each agent has internal LLM. Manager orchestrates agents.
|
| 166 |
-
|
| 167 |
-
**Pattern**: Uses `MagenticBuilder` with participants (searcher, hypothesizer, judge, reporter). Manager uses `OpenAIChatClient`. Workflow built in `_build_workflow()`.
|
| 168 |
-
|
| 169 |
-
**Event Processing**: `_process_event()` converts Magentic events to `AgentEvent`. Handles: `MagenticOrchestratorMessageEvent`, `MagenticAgentMessageEvent`, `MagenticFinalResultEvent`, `MagenticAgentDeltaEvent`, `WorkflowOutputEvent`.
|
| 170 |
-
|
| 171 |
-
**Text Extraction**: `_extract_text()` defensively extracts text from messages. Priority: `.content` → `.text` → `str(message)`. Handles buggy message objects.
|
| 172 |
-
|
| 173 |
-
**State Initialization**: Initialize embedding service with graceful fallback. Use `init_magentic_state()` (deprecated).
|
| 174 |
-
|
| 175 |
-
**Requirements**: Must call `check_magentic_requirements()` in `__init__`. Requires `agent-framework-core` and OpenAI API key.
|
| 176 |
-
|
| 177 |
-
**Event Types**: Maps agent names to event types: "search" → "search_complete", "judge" → "judge_complete", "hypothes" → "hypothesizing", "report" → "synthesizing".
|
| 178 |
-
|
| 179 |
-
---
|
| 180 |
-
|
| 181 |
-
## src/agent_factory/ - Factory Rules
|
| 182 |
-
|
| 183 |
-
**Pattern**: Factory functions for creating agents and handlers. Lazy initialization for optional dependencies. Support OpenAI/Anthropic/HF Inference.
|
| 184 |
-
|
| 185 |
-
**Judges**: `create_judge_handler()` creates `JudgeHandler` with structured output (`JudgeAssessment`). Supports `MockJudgeHandler`, `HFInferenceJudgeHandler` as fallbacks.
|
| 186 |
-
|
| 187 |
-
**Agents**: Factory functions in `agents.py` for all Pydantic AI agents. Pattern: `create_agent_name(model: Any | None = None) -> AgentName`. Use `get_model()` if model not provided.
|
| 188 |
-
|
| 189 |
-
**Graph Builder**: `graph_builder.py` contains utilities for building research graphs. Supports iterative and deep research graph construction.
|
| 190 |
-
|
| 191 |
-
**Error Handling**: Raise `ConfigurationError` if required API keys missing. Log agent creation. Handle import errors gracefully.
|
| 192 |
-
|
| 193 |
-
---
|
| 194 |
-
|
| 195 |
-
## src/prompts/ - Prompt Rules
|
| 196 |
-
|
| 197 |
-
**Pattern**: System prompts stored as module-level constants. Include date injection: `datetime.now().strftime("%Y-%m-%d")`. Format evidence with truncation (1500 chars per item).
|
| 198 |
-
|
| 199 |
-
**Judge Prompts**: In `judge.py`. Handle empty evidence case separately. Always request structured JSON output.
|
| 200 |
-
|
| 201 |
-
**Hypothesis Prompts**: In `hypothesis.py`. Use diverse evidence selection (MMR algorithm). Sentence-aware truncation.
|
| 202 |
-
|
| 203 |
-
**Report Prompts**: In `report.py`. Include full citation details. Use diverse evidence selection (n=20). Emphasize citation validation rules.
|
| 204 |
-
|
| 205 |
-
---
|
| 206 |
-
|
| 207 |
-
## Testing Rules
|
| 208 |
-
|
| 209 |
-
**Structure**: Unit tests in `tests/unit/` (mocked, fast). Integration tests in `tests/integration/` (real APIs, marked `@pytest.mark.integration`).
|
| 210 |
-
|
| 211 |
-
**Mocking**: Use `respx` for httpx mocking. Use `pytest-mock` for general mocking. Mock LLM calls in unit tests (use `MockJudgeHandler`).
|
| 212 |
-
|
| 213 |
-
**Fixtures**: Common fixtures in `tests/conftest.py`: `mock_httpx_client`, `mock_llm_response`.
|
| 214 |
-
|
| 215 |
-
**Coverage**: Aim for >80% coverage. Test error handling, edge cases, and integration paths.
|
| 216 |
-
|
| 217 |
-
---
|
| 218 |
-
|
| 219 |
-
## File-Specific Agent Rules
|
| 220 |
-
|
| 221 |
-
**knowledge_gap.py**: Outputs `KnowledgeGapOutput`. System prompt evaluates research completeness. Handles conversation history. Returns fallback on error.
|
| 222 |
-
|
| 223 |
-
**writer.py**: Returns markdown string. System prompt includes citation format examples. Validates inputs. Truncates long findings. Retry logic for transient failures.
|
| 224 |
-
|
| 225 |
-
**long_writer.py**: Uses `ReportDraft` input/output. Writes sections iteratively. Reformats references (deduplicates, renumbers). Reformats section headings.
|
| 226 |
-
|
| 227 |
-
**proofreader.py**: Takes `ReportDraft`, returns polished markdown. Removes duplicates. Adds summary. Preserves references.
|
| 228 |
-
|
| 229 |
-
**tool_selector.py**: Outputs `AgentSelectionPlan`. System prompt lists available agents (WebSearchAgent, SiteCrawlerAgent, RAGAgent). Guidelines for when to use each.
|
| 230 |
-
|
| 231 |
-
**thinking.py**: Returns observation string. Generates observations from conversation history. Uses query and background context.
|
| 232 |
-
|
| 233 |
-
**input_parser.py**: Outputs `ParsedQuery`. Detects research mode (iterative/deep). Extracts entities and research questions. Improves/refines query.
|
| 234 |
-
|
| 235 |
-
|
| 236 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
LICENSE.md
DELETED
|
@@ -1,25 +0,0 @@
|
|
| 1 |
-
# License
|
| 2 |
-
|
| 3 |
-
DeepCritical is licensed under the MIT License.
|
| 4 |
-
|
| 5 |
-
## MIT License
|
| 6 |
-
|
| 7 |
-
Copyright (c) 2024 DeepCritical Team
|
| 8 |
-
|
| 9 |
-
Permission is hereby granted, free of charge, to any person obtaining a copy
|
| 10 |
-
of this software and associated documentation files (the "Software"), to deal
|
| 11 |
-
in the Software without restriction, including without limitation the rights
|
| 12 |
-
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
| 13 |
-
copies of the Software, and to permit persons to whom the Software is
|
| 14 |
-
furnished to do so, subject to the following conditions:
|
| 15 |
-
|
| 16 |
-
The above copyright notice and this permission notice shall be included in all
|
| 17 |
-
copies or substantial portions of the Software.
|
| 18 |
-
|
| 19 |
-
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
| 20 |
-
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
| 21 |
-
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
| 22 |
-
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
| 23 |
-
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
| 24 |
-
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
|
| 25 |
-
SOFTWARE.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Makefile
ADDED
|
@@ -0,0 +1,51 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
.PHONY: install test lint format typecheck check clean all cov cov-html
|
| 2 |
+
|
| 3 |
+
# Default target
|
| 4 |
+
all: check
|
| 5 |
+
|
| 6 |
+
install:
|
| 7 |
+
uv sync --all-extras
|
| 8 |
+
uv run pre-commit install
|
| 9 |
+
|
| 10 |
+
test:
|
| 11 |
+
uv run pytest tests/unit/ -v -m "not openai" -p no:logfire
|
| 12 |
+
|
| 13 |
+
test-hf:
|
| 14 |
+
uv run pytest tests/ -v -m "huggingface" -p no:logfire
|
| 15 |
+
|
| 16 |
+
test-all:
|
| 17 |
+
uv run pytest tests/ -v -p no:logfire
|
| 18 |
+
|
| 19 |
+
# Coverage aliases
|
| 20 |
+
cov: test-cov
|
| 21 |
+
test-cov:
|
| 22 |
+
uv run pytest --cov=src --cov-report=term-missing -m "not openai" -p no:logfire
|
| 23 |
+
|
| 24 |
+
cov-html:
|
| 25 |
+
uv run pytest --cov=src --cov-report=html -p no:logfire
|
| 26 |
+
@echo "Coverage report: open htmlcov/index.html"
|
| 27 |
+
|
| 28 |
+
lint:
|
| 29 |
+
uv run ruff check src tests
|
| 30 |
+
|
| 31 |
+
format:
|
| 32 |
+
uv run ruff format src tests
|
| 33 |
+
|
| 34 |
+
typecheck:
|
| 35 |
+
uv run mypy src
|
| 36 |
+
|
| 37 |
+
check: lint typecheck test-cov
|
| 38 |
+
@echo "All checks passed!"
|
| 39 |
+
|
| 40 |
+
docs-build:
|
| 41 |
+
uv run mkdocs build
|
| 42 |
+
|
| 43 |
+
docs-serve:
|
| 44 |
+
uv run mkdocs serve
|
| 45 |
+
|
| 46 |
+
docs-clean:
|
| 47 |
+
rm -rf site/
|
| 48 |
+
|
| 49 |
+
clean:
|
| 50 |
+
rm -rf .pytest_cache .mypy_cache .ruff_cache __pycache__ .coverage htmlcov
|
| 51 |
+
find . -type d -name "__pycache__" -exec rm -rf {} + 2>/dev/null || true
|
README.md
CHANGED
|
@@ -1,5 +1,5 @@
|
|
| 1 |
---
|
| 2 |
-
title:
|
| 3 |
emoji: 🐉
|
| 4 |
colorFrom: red
|
| 5 |
colorTo: yellow
|
|
@@ -10,54 +10,114 @@ app_file: src/app.py
|
|
| 10 |
hf_oauth: true
|
| 11 |
hf_oauth_expiration_minutes: 480
|
| 12 |
hf_oauth_scopes:
|
| 13 |
-
|
| 14 |
-
# This scope grants access to:
|
| 15 |
-
# - HuggingFace's own Inference API
|
| 16 |
-
# - Third-party inference providers (nebius, together, scaleway, hyperbolic, novita, nscale, sambanova, ovh, fireworks, etc.)
|
| 17 |
-
# - All models available through the Inference Providers API
|
| 18 |
-
- inference-api
|
| 19 |
-
# Optional: Uncomment if you need to access user's billing information
|
| 20 |
-
# - read-billing
|
| 21 |
pinned: true
|
| 22 |
license: mit
|
| 23 |
tags:
|
| 24 |
- mcp-in-action-track-enterprise
|
| 25 |
- mcp-hackathon
|
| 26 |
-
-
|
| 27 |
- biomedical-ai
|
| 28 |
- pydantic-ai
|
| 29 |
- llamaindex
|
| 30 |
- modal
|
| 31 |
-
- building-mcp-track-enterprise
|
| 32 |
-
- building-mcp-track-consumer
|
| 33 |
-
- mcp-in-action-track-enterprise
|
| 34 |
-
- mcp-in-action-track-consumer
|
| 35 |
-
- building-mcp-track-modal
|
| 36 |
-
- building-mcp-track-blaxel
|
| 37 |
-
- building-mcp-track-llama-index
|
| 38 |
-
- building-mcp-track-HUGGINGFACE
|
| 39 |
---
|
| 40 |
|
| 41 |
> [!IMPORTANT]
|
| 42 |
> **You are reading the Gradio Demo README!**
|
| 43 |
>
|
| 44 |
-
> - 📚 **Documentation**: See our [technical documentation](
|
| 45 |
-
> - 📖 **Complete README**: Check out the [
|
| 46 |
-
> -
|
| 47 |
|
| 48 |
<div align="center">
|
| 49 |
|
| 50 |
-
[](https://codecov.io/gh/DeepCritical/GradioDemo)
|
| 54 |
[](https://discord.gg/qdfnvSPcqP)
|
| 55 |
|
| 56 |
|
| 57 |
</div>
|
| 58 |
|
| 59 |
-
#
|
| 60 |
|
| 61 |
## About
|
| 62 |
|
| 63 |
-
The
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
---
|
| 2 |
+
title: Critical Deep Resarch
|
| 3 |
emoji: 🐉
|
| 4 |
colorFrom: red
|
| 5 |
colorTo: yellow
|
|
|
|
| 10 |
hf_oauth: true
|
| 11 |
hf_oauth_expiration_minutes: 480
|
| 12 |
hf_oauth_scopes:
|
| 13 |
+
- inference-api
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 14 |
pinned: true
|
| 15 |
license: mit
|
| 16 |
tags:
|
| 17 |
- mcp-in-action-track-enterprise
|
| 18 |
- mcp-hackathon
|
| 19 |
+
- drug-repurposing
|
| 20 |
- biomedical-ai
|
| 21 |
- pydantic-ai
|
| 22 |
- llamaindex
|
| 23 |
- modal
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 24 |
---
|
| 25 |
|
| 26 |
> [!IMPORTANT]
|
| 27 |
> **You are reading the Gradio Demo README!**
|
| 28 |
>
|
| 29 |
+
> - 📚 **Documentation**: See our [technical documentation](deepcritical.github.io/GradioDemo/) for detailed information
|
| 30 |
+
> - 📖 **Complete README**: Check out the [full README](.github/README.md) for setup, configuration, and contribution guidelines
|
| 31 |
+
> - 🏆 **Hackathon Submission**: Keep reading below for more information about our MCP Hackathon submission
|
| 32 |
|
| 33 |
<div align="center">
|
| 34 |
|
| 35 |
+
[](https://github.com/DeepCritical/GradioDemo)
|
| 36 |
+
[](deepcritical.github.io/GradioDemo/)
|
| 37 |
+
[](https://huggingface.co/spaces/DataQuests/DeepCritical)
|
| 38 |
[](https://codecov.io/gh/DeepCritical/GradioDemo)
|
| 39 |
[](https://discord.gg/qdfnvSPcqP)
|
| 40 |
|
| 41 |
|
| 42 |
</div>
|
| 43 |
|
| 44 |
+
# DeepCritical
|
| 45 |
|
| 46 |
## About
|
| 47 |
|
| 48 |
+
The [Deep Critical Gradio Hackathon Team](### Team) met online in the Alzheimer's Critical Literature Review Group in the Hugging Science initiative. We're building the agent framework we want to use for ai assisted research to [turn the vast amounts of clinical data into cures](https://github.com/DeepCritical/GradioDemo).
|
| 49 |
+
|
| 50 |
+
For this hackathon we're proposing a simple yet powerful Deep Research Agent that iteratively looks for the answer until it finds it using general purpose websearch and special purpose retrievers for technical retrievers.
|
| 51 |
+
|
| 52 |
+
## Deep Critical In the Medial
|
| 53 |
+
|
| 54 |
+
- Social Medial Posts about Deep Critical :
|
| 55 |
+
-
|
| 56 |
+
-
|
| 57 |
+
-
|
| 58 |
+
-
|
| 59 |
+
-
|
| 60 |
+
-
|
| 61 |
+
-
|
| 62 |
+
|
| 63 |
+
## Important information
|
| 64 |
+
|
| 65 |
+
- **[readme](.github\README.md)**: configure, deploy , contribute and learn more here.
|
| 66 |
+
- **[docs](deepcritical.github.io/GradioDemo/)**: want to know how all this works ? read our detailed technical documentation here.
|
| 67 |
+
- **[demo](https://huggingface/spaces/DataQuests/DeepCritical)**: Try our demo on huggingface
|
| 68 |
+
- **[team](### Team)**: Join us , or follow us !
|
| 69 |
+
- **[video]**: See our demo video
|
| 70 |
+
|
| 71 |
+
## Future Developments
|
| 72 |
+
|
| 73 |
+
- [] Apply Deep Research Systems To Generate Short Form Video (up to 5 minutes)
|
| 74 |
+
- [] Visualize Pydantic Graphs as Loading Screens in the UI
|
| 75 |
+
- [] Improve Data Science with more Complex Graph Agents
|
| 76 |
+
- [] Create Deep Critical Drug Reporposing / Discovery Demo
|
| 77 |
+
- [] Create Deep Critical Literal Review
|
| 78 |
+
- [] Create Deep Critical Hypothesis Generator
|
| 79 |
+
- [] Create PyPi Package
|
| 80 |
+
|
| 81 |
+
## Completed
|
| 82 |
+
|
| 83 |
+
- [] **Multi-Source Search**: PubMed, ClinicalTrials.gov, bioRxiv/medRxiv
|
| 84 |
+
- [] **MCP Integration**: Use our tools from Claude Desktop or any MCP client
|
| 85 |
+
- [] **HuggingFace OAuth**: Sign in with HuggingFace
|
| 86 |
+
- [] **Modal Sandbox**: Secure execution of AI-generated statistical code
|
| 87 |
+
- [] **LlamaIndex RAG**: Semantic search and evidence synthesis
|
| 88 |
+
- [] **HuggingfaceInference**:
|
| 89 |
+
- [] **HuggingfaceMCP Custom Config To Use Community Tools**:
|
| 90 |
+
- [] **Strongly Typed Composable Graphs**:
|
| 91 |
+
- [] **Specialized Research Teams of Agents**:
|
| 92 |
+
|
| 93 |
+
|
| 94 |
+
|
| 95 |
+
### Team
|
| 96 |
+
|
| 97 |
+
- ZJ
|
| 98 |
+
- MarioAderman
|
| 99 |
+
- Josephrp
|
| 100 |
+
|
| 101 |
+
|
| 102 |
+
## Acknowledgements
|
| 103 |
+
|
| 104 |
+
- McSwaggins
|
| 105 |
+
- Magentic
|
| 106 |
+
- Huggingface
|
| 107 |
+
- Gradio
|
| 108 |
+
- DeepCritical
|
| 109 |
+
- Sponsors
|
| 110 |
+
- Microsoft
|
| 111 |
+
- Pydantic
|
| 112 |
+
- Llama-index
|
| 113 |
+
- Anthhropic/MCP
|
| 114 |
+
- List of Tools Makers
|
| 115 |
+
|
| 116 |
+
|
| 117 |
+
## Links
|
| 118 |
+
|
| 119 |
+
[](https://github.com/DeepCritical/GradioDemo)
|
| 120 |
+
[](deepcritical.github.io/GradioDemo/)
|
| 121 |
+
[](https://huggingface.co/spaces/DataQuests/DeepCritical)
|
| 122 |
+
[](https://codecov.io/gh/DeepCritical/GradioDemo)
|
| 123 |
+
[](https://discord.gg/qdfnvSPcqP)
|
deployments/README.md
DELETED
|
@@ -1,46 +0,0 @@
|
|
| 1 |
-
# Deployments
|
| 2 |
-
|
| 3 |
-
This directory contains infrastructure deployment scripts for DeepCritical services.
|
| 4 |
-
|
| 5 |
-
## Modal Deployments
|
| 6 |
-
|
| 7 |
-
### TTS Service (`modal_tts.py`)
|
| 8 |
-
|
| 9 |
-
Deploys the Kokoro TTS (Text-to-Speech) function to Modal's GPU infrastructure.
|
| 10 |
-
|
| 11 |
-
**Deploy:**
|
| 12 |
-
```bash
|
| 13 |
-
modal deploy deployments/modal_tts.py
|
| 14 |
-
```
|
| 15 |
-
|
| 16 |
-
**Features:**
|
| 17 |
-
- Kokoro 82M TTS model
|
| 18 |
-
- GPU-accelerated (T4)
|
| 19 |
-
- Voice options: af_heart, af_bella, am_michael, etc.
|
| 20 |
-
- Configurable speech speed
|
| 21 |
-
|
| 22 |
-
**Requirements:**
|
| 23 |
-
- Modal account and credentials (`MODAL_TOKEN_ID`, `MODAL_TOKEN_SECRET` in `.env`)
|
| 24 |
-
- GPU quota on Modal
|
| 25 |
-
|
| 26 |
-
**After Deployment:**
|
| 27 |
-
The function will be available at:
|
| 28 |
-
- App: `deepcritical-tts`
|
| 29 |
-
- Function: `kokoro_tts_function`
|
| 30 |
-
|
| 31 |
-
The main application (`src/services/tts_modal.py`) will call this deployed function.
|
| 32 |
-
|
| 33 |
-
---
|
| 34 |
-
|
| 35 |
-
## Adding New Deployments
|
| 36 |
-
|
| 37 |
-
When adding new deployment scripts:
|
| 38 |
-
|
| 39 |
-
1. Create a new file: `deployments/<service_name>.py`
|
| 40 |
-
2. Use Modal's app pattern:
|
| 41 |
-
```python
|
| 42 |
-
import modal
|
| 43 |
-
app = modal.App("deepcritical-<service-name>")
|
| 44 |
-
```
|
| 45 |
-
3. Document in this README
|
| 46 |
-
4. Test deployment: `modal deploy deployments/<service_name>.py`
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
deployments/modal_tts.py
DELETED
|
@@ -1,97 +0,0 @@
|
|
| 1 |
-
"""Deploy Kokoro TTS function to Modal.
|
| 2 |
-
|
| 3 |
-
This script deploys the TTS function to Modal so it can be called
|
| 4 |
-
from the main DeepCritical application.
|
| 5 |
-
|
| 6 |
-
Usage:
|
| 7 |
-
modal deploy deploy_modal_tts.py
|
| 8 |
-
|
| 9 |
-
After deployment, the function will be available at:
|
| 10 |
-
App: deepcritical-tts
|
| 11 |
-
Function: kokoro_tts_function
|
| 12 |
-
"""
|
| 13 |
-
|
| 14 |
-
import modal
|
| 15 |
-
import numpy as np
|
| 16 |
-
|
| 17 |
-
# Create Modal app
|
| 18 |
-
app = modal.App("deepcritical-tts")
|
| 19 |
-
|
| 20 |
-
# Define Kokoro TTS dependencies
|
| 21 |
-
KOKORO_DEPENDENCIES = [
|
| 22 |
-
"torch>=2.0.0",
|
| 23 |
-
"transformers>=4.30.0",
|
| 24 |
-
"numpy<2.0",
|
| 25 |
-
]
|
| 26 |
-
|
| 27 |
-
# Create Modal image with Kokoro
|
| 28 |
-
tts_image = (
|
| 29 |
-
modal.Image.debian_slim(python_version="3.11")
|
| 30 |
-
.apt_install("git") # Install git first for pip install from github
|
| 31 |
-
.pip_install(*KOKORO_DEPENDENCIES)
|
| 32 |
-
.pip_install("git+https://github.com/hexgrad/kokoro.git")
|
| 33 |
-
)
|
| 34 |
-
|
| 35 |
-
|
| 36 |
-
@app.function(
|
| 37 |
-
image=tts_image,
|
| 38 |
-
gpu="T4",
|
| 39 |
-
timeout=60,
|
| 40 |
-
)
|
| 41 |
-
def kokoro_tts_function(text: str, voice: str, speed: float) -> tuple[int, np.ndarray]:
|
| 42 |
-
"""Modal GPU function for Kokoro TTS.
|
| 43 |
-
|
| 44 |
-
This function runs on Modal's GPU infrastructure.
|
| 45 |
-
Based on: https://huggingface.co/spaces/hexgrad/Kokoro-TTS
|
| 46 |
-
|
| 47 |
-
Args:
|
| 48 |
-
text: Text to synthesize
|
| 49 |
-
voice: Voice ID (e.g., af_heart, af_bella, am_michael)
|
| 50 |
-
speed: Speech speed multiplier (0.5-2.0)
|
| 51 |
-
|
| 52 |
-
Returns:
|
| 53 |
-
Tuple of (sample_rate, audio_array)
|
| 54 |
-
"""
|
| 55 |
-
import numpy as np
|
| 56 |
-
|
| 57 |
-
try:
|
| 58 |
-
import torch
|
| 59 |
-
from kokoro import KModel, KPipeline
|
| 60 |
-
|
| 61 |
-
# Initialize model (cached on GPU)
|
| 62 |
-
model = KModel().to("cuda").eval()
|
| 63 |
-
pipeline = KPipeline(lang_code=voice[0])
|
| 64 |
-
pack = pipeline.load_voice(voice)
|
| 65 |
-
|
| 66 |
-
# Generate audio - accumulate all chunks
|
| 67 |
-
audio_chunks = []
|
| 68 |
-
for _, ps, _ in pipeline(text, voice, speed):
|
| 69 |
-
ref_s = pack[len(ps) - 1]
|
| 70 |
-
audio = model(ps, ref_s, speed)
|
| 71 |
-
audio_chunks.append(audio.numpy())
|
| 72 |
-
|
| 73 |
-
# Concatenate all audio chunks
|
| 74 |
-
if audio_chunks:
|
| 75 |
-
full_audio = np.concatenate(audio_chunks)
|
| 76 |
-
return (24000, full_audio)
|
| 77 |
-
|
| 78 |
-
# If no audio generated, return empty
|
| 79 |
-
return (24000, np.zeros(1, dtype=np.float32))
|
| 80 |
-
|
| 81 |
-
except ImportError as e:
|
| 82 |
-
raise RuntimeError(
|
| 83 |
-
f"Kokoro not installed: {e}. "
|
| 84 |
-
"Install with: pip install git+https://github.com/hexgrad/kokoro.git"
|
| 85 |
-
) from e
|
| 86 |
-
except Exception as e:
|
| 87 |
-
raise RuntimeError(f"TTS synthesis failed: {e}") from e
|
| 88 |
-
|
| 89 |
-
|
| 90 |
-
# Optional: Add a test entrypoint
|
| 91 |
-
@app.local_entrypoint()
|
| 92 |
-
def test():
|
| 93 |
-
"""Test the TTS function."""
|
| 94 |
-
print("Testing Modal TTS function...")
|
| 95 |
-
sample_rate, audio = kokoro_tts_function.remote("Hello, this is a test.", "af_heart", 1.0)
|
| 96 |
-
print(f"Generated audio: {sample_rate}Hz, shape={audio.shape}")
|
| 97 |
-
print("✓ TTS function works!")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
dev/Makefile
ADDED
|
@@ -0,0 +1,51 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
.PHONY: install test lint format typecheck check clean all cov cov-html
|
| 2 |
+
|
| 3 |
+
# Default target
|
| 4 |
+
all: check
|
| 5 |
+
|
| 6 |
+
install:
|
| 7 |
+
uv sync --all-extras
|
| 8 |
+
uv run pre-commit install
|
| 9 |
+
|
| 10 |
+
test:
|
| 11 |
+
uv run pytest tests/unit/ -v -m "not openai" -p no:logfire
|
| 12 |
+
|
| 13 |
+
test-hf:
|
| 14 |
+
uv run pytest tests/ -v -m "huggingface" -p no:logfire
|
| 15 |
+
|
| 16 |
+
test-all:
|
| 17 |
+
uv run pytest tests/ -v -p no:logfire
|
| 18 |
+
|
| 19 |
+
# Coverage aliases
|
| 20 |
+
cov: test-cov
|
| 21 |
+
test-cov:
|
| 22 |
+
uv run pytest --cov=src --cov-report=term-missing -m "not openai" -p no:logfire
|
| 23 |
+
|
| 24 |
+
cov-html:
|
| 25 |
+
uv run pytest --cov=src --cov-report=html -p no:logfire
|
| 26 |
+
@echo "Coverage report: open htmlcov/index.html"
|
| 27 |
+
|
| 28 |
+
lint:
|
| 29 |
+
uv run ruff check src tests
|
| 30 |
+
|
| 31 |
+
format:
|
| 32 |
+
uv run ruff format src tests
|
| 33 |
+
|
| 34 |
+
typecheck:
|
| 35 |
+
uv run mypy src
|
| 36 |
+
|
| 37 |
+
check: lint typecheck test-cov
|
| 38 |
+
@echo "All checks passed!"
|
| 39 |
+
|
| 40 |
+
docs-build:
|
| 41 |
+
uv run mkdocs build
|
| 42 |
+
|
| 43 |
+
docs-serve:
|
| 44 |
+
uv run mkdocs serve
|
| 45 |
+
|
| 46 |
+
docs-clean:
|
| 47 |
+
rm -rf site/
|
| 48 |
+
|
| 49 |
+
clean:
|
| 50 |
+
rm -rf .pytest_cache .mypy_cache .ruff_cache __pycache__ .coverage htmlcov
|
| 51 |
+
find . -type d -name "__pycache__" -exec rm -rf {} + 2>/dev/null || true
|
docs/api/agents.md
CHANGED
|
@@ -12,19 +12,27 @@ This page documents the API for DeepCritical agents.
|
|
| 12 |
|
| 13 |
#### `evaluate`
|
| 14 |
|
| 15 |
-
|
| 16 |
-
|
| 17 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 18 |
|
| 19 |
Evaluates research completeness and identifies outstanding knowledge gaps.
|
| 20 |
|
| 21 |
**Parameters**:
|
| 22 |
- `query`: Research query string
|
| 23 |
-
- `background_context`: Background context for the query
|
| 24 |
-
- `conversation_history`:
|
| 25 |
-
- `iteration`: Current iteration number
|
| 26 |
-
- `time_elapsed_minutes`: Elapsed time in minutes
|
| 27 |
-
- `max_time_minutes`: Maximum time limit in minutes
|
| 28 |
|
| 29 |
**Returns**: `KnowledgeGapOutput` with:
|
| 30 |
- `research_complete`: Boolean indicating if research is complete
|
|
@@ -40,17 +48,21 @@ Evaluates research completeness and identifies outstanding knowledge gaps.
|
|
| 40 |
|
| 41 |
#### `select_tools`
|
| 42 |
|
| 43 |
-
|
| 44 |
-
|
| 45 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 46 |
|
| 47 |
-
Selects tools for addressing
|
| 48 |
|
| 49 |
**Parameters**:
|
| 50 |
-
- `gap`: The knowledge gap to address
|
| 51 |
- `query`: Research query string
|
| 52 |
-
- `
|
| 53 |
-
- `
|
| 54 |
|
| 55 |
**Returns**: `AgentSelectionPlan` with list of `AgentTask` objects.
|
| 56 |
|
|
@@ -64,17 +76,23 @@ Selects tools for addressing a knowledge gap.
|
|
| 64 |
|
| 65 |
#### `write_report`
|
| 66 |
|
| 67 |
-
|
| 68 |
-
|
| 69 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 70 |
|
| 71 |
Generates a markdown report from research findings.
|
| 72 |
|
| 73 |
**Parameters**:
|
| 74 |
- `query`: Research query string
|
| 75 |
- `findings`: Research findings to include in report
|
| 76 |
-
- `output_length`:
|
| 77 |
-
- `output_instructions`:
|
| 78 |
|
| 79 |
**Returns**: Markdown string with numbered citations.
|
| 80 |
|
|
@@ -88,25 +106,36 @@ Generates a markdown report from research findings.
|
|
| 88 |
|
| 89 |
#### `write_next_section`
|
| 90 |
|
| 91 |
-
|
| 92 |
-
|
| 93 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 94 |
|
| 95 |
Writes the next section of a long-form report.
|
| 96 |
|
| 97 |
**Parameters**:
|
| 98 |
-
- `
|
| 99 |
-
- `
|
| 100 |
-
- `
|
| 101 |
-
- `
|
| 102 |
|
| 103 |
-
**Returns**: `LongWriterOutput` with
|
| 104 |
|
| 105 |
#### `write_report`
|
| 106 |
|
| 107 |
-
|
| 108 |
-
|
| 109 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 110 |
|
| 111 |
Generates final report from draft.
|
| 112 |
|
|
@@ -127,9 +156,14 @@ Generates final report from draft.
|
|
| 127 |
|
| 128 |
#### `proofread`
|
| 129 |
|
| 130 |
-
|
| 131 |
-
|
| 132 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 133 |
|
| 134 |
Proofreads and polishes a report draft.
|
| 135 |
|
|
@@ -150,17 +184,21 @@ Proofreads and polishes a report draft.
|
|
| 150 |
|
| 151 |
#### `generate_observations`
|
| 152 |
|
| 153 |
-
|
| 154 |
-
|
| 155 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 156 |
|
| 157 |
Generates observations from conversation history.
|
| 158 |
|
| 159 |
**Parameters**:
|
| 160 |
- `query`: Research query string
|
| 161 |
-
- `background_context`:
|
| 162 |
-
- `conversation_history`:
|
| 163 |
-
- `iteration`: Current iteration number (default: 1)
|
| 164 |
|
| 165 |
**Returns**: Observation string.
|
| 166 |
|
|
@@ -172,11 +210,14 @@ Generates observations from conversation history.
|
|
| 172 |
|
| 173 |
### Methods
|
| 174 |
|
| 175 |
-
#### `
|
| 176 |
|
| 177 |
-
|
| 178 |
-
|
| 179 |
-
|
|
|
|
|
|
|
|
|
|
| 180 |
|
| 181 |
Parses and improves a user query.
|
| 182 |
|
|
@@ -194,13 +235,18 @@ Parses and improves a user query.
|
|
| 194 |
|
| 195 |
All agents have factory functions in `src.agent_factory.agents`:
|
| 196 |
|
| 197 |
-
|
| 198 |
-
|
| 199 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 200 |
|
| 201 |
**Parameters**:
|
| 202 |
- `model`: Optional Pydantic AI model. If None, uses `get_model()` from settings.
|
| 203 |
-
- `oauth_token`: Optional OAuth token from HuggingFace login (takes priority over env vars)
|
| 204 |
|
| 205 |
**Returns**: Agent instance.
|
| 206 |
|
|
@@ -209,3 +255,12 @@ All agents have factory functions in `src.agent_factory.agents`:
|
|
| 209 |
- [Architecture - Agents](../architecture/agents.md) - Architecture overview
|
| 210 |
- [Models API](models.md) - Data models used by agents
|
| 211 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 12 |
|
| 13 |
#### `evaluate`
|
| 14 |
|
| 15 |
+
```python
|
| 16 |
+
async def evaluate(
|
| 17 |
+
self,
|
| 18 |
+
query: str,
|
| 19 |
+
background_context: str,
|
| 20 |
+
conversation_history: Conversation,
|
| 21 |
+
iteration: int,
|
| 22 |
+
time_elapsed_minutes: float,
|
| 23 |
+
max_time_minutes: float
|
| 24 |
+
) -> KnowledgeGapOutput
|
| 25 |
+
```
|
| 26 |
|
| 27 |
Evaluates research completeness and identifies outstanding knowledge gaps.
|
| 28 |
|
| 29 |
**Parameters**:
|
| 30 |
- `query`: Research query string
|
| 31 |
+
- `background_context`: Background context for the query
|
| 32 |
+
- `conversation_history`: Conversation history with previous iterations
|
| 33 |
+
- `iteration`: Current iteration number
|
| 34 |
+
- `time_elapsed_minutes`: Elapsed time in minutes
|
| 35 |
+
- `max_time_minutes`: Maximum time limit in minutes
|
| 36 |
|
| 37 |
**Returns**: `KnowledgeGapOutput` with:
|
| 38 |
- `research_complete`: Boolean indicating if research is complete
|
|
|
|
| 48 |
|
| 49 |
#### `select_tools`
|
| 50 |
|
| 51 |
+
```python
|
| 52 |
+
async def select_tools(
|
| 53 |
+
self,
|
| 54 |
+
query: str,
|
| 55 |
+
knowledge_gaps: list[str],
|
| 56 |
+
available_tools: list[str]
|
| 57 |
+
) -> AgentSelectionPlan
|
| 58 |
+
```
|
| 59 |
|
| 60 |
+
Selects tools for addressing knowledge gaps.
|
| 61 |
|
| 62 |
**Parameters**:
|
|
|
|
| 63 |
- `query`: Research query string
|
| 64 |
+
- `knowledge_gaps`: List of knowledge gaps to address
|
| 65 |
+
- `available_tools`: List of available tool names
|
| 66 |
|
| 67 |
**Returns**: `AgentSelectionPlan` with list of `AgentTask` objects.
|
| 68 |
|
|
|
|
| 76 |
|
| 77 |
#### `write_report`
|
| 78 |
|
| 79 |
+
```python
|
| 80 |
+
async def write_report(
|
| 81 |
+
self,
|
| 82 |
+
query: str,
|
| 83 |
+
findings: str,
|
| 84 |
+
output_length: str = "medium",
|
| 85 |
+
output_instructions: str | None = None
|
| 86 |
+
) -> str
|
| 87 |
+
```
|
| 88 |
|
| 89 |
Generates a markdown report from research findings.
|
| 90 |
|
| 91 |
**Parameters**:
|
| 92 |
- `query`: Research query string
|
| 93 |
- `findings`: Research findings to include in report
|
| 94 |
+
- `output_length`: Desired output length ("short", "medium", "long")
|
| 95 |
+
- `output_instructions`: Additional instructions for report generation
|
| 96 |
|
| 97 |
**Returns**: Markdown string with numbered citations.
|
| 98 |
|
|
|
|
| 106 |
|
| 107 |
#### `write_next_section`
|
| 108 |
|
| 109 |
+
```python
|
| 110 |
+
async def write_next_section(
|
| 111 |
+
self,
|
| 112 |
+
query: str,
|
| 113 |
+
draft: ReportDraft,
|
| 114 |
+
section_title: str,
|
| 115 |
+
section_content: str
|
| 116 |
+
) -> LongWriterOutput
|
| 117 |
+
```
|
| 118 |
|
| 119 |
Writes the next section of a long-form report.
|
| 120 |
|
| 121 |
**Parameters**:
|
| 122 |
+
- `query`: Research query string
|
| 123 |
+
- `draft`: Current report draft
|
| 124 |
+
- `section_title`: Title of the section to write
|
| 125 |
+
- `section_content`: Content/guidance for the section
|
| 126 |
|
| 127 |
+
**Returns**: `LongWriterOutput` with updated draft.
|
| 128 |
|
| 129 |
#### `write_report`
|
| 130 |
|
| 131 |
+
```python
|
| 132 |
+
async def write_report(
|
| 133 |
+
self,
|
| 134 |
+
query: str,
|
| 135 |
+
report_title: str,
|
| 136 |
+
report_draft: ReportDraft
|
| 137 |
+
) -> str
|
| 138 |
+
```
|
| 139 |
|
| 140 |
Generates final report from draft.
|
| 141 |
|
|
|
|
| 156 |
|
| 157 |
#### `proofread`
|
| 158 |
|
| 159 |
+
```python
|
| 160 |
+
async def proofread(
|
| 161 |
+
self,
|
| 162 |
+
query: str,
|
| 163 |
+
report_title: str,
|
| 164 |
+
report_draft: ReportDraft
|
| 165 |
+
) -> str
|
| 166 |
+
```
|
| 167 |
|
| 168 |
Proofreads and polishes a report draft.
|
| 169 |
|
|
|
|
| 184 |
|
| 185 |
#### `generate_observations`
|
| 186 |
|
| 187 |
+
```python
|
| 188 |
+
async def generate_observations(
|
| 189 |
+
self,
|
| 190 |
+
query: str,
|
| 191 |
+
background_context: str,
|
| 192 |
+
conversation_history: Conversation
|
| 193 |
+
) -> str
|
| 194 |
+
```
|
| 195 |
|
| 196 |
Generates observations from conversation history.
|
| 197 |
|
| 198 |
**Parameters**:
|
| 199 |
- `query`: Research query string
|
| 200 |
+
- `background_context`: Background context
|
| 201 |
+
- `conversation_history`: Conversation history
|
|
|
|
| 202 |
|
| 203 |
**Returns**: Observation string.
|
| 204 |
|
|
|
|
| 210 |
|
| 211 |
### Methods
|
| 212 |
|
| 213 |
+
#### `parse_query`
|
| 214 |
|
| 215 |
+
```python
|
| 216 |
+
async def parse_query(
|
| 217 |
+
self,
|
| 218 |
+
query: str
|
| 219 |
+
) -> ParsedQuery
|
| 220 |
+
```
|
| 221 |
|
| 222 |
Parses and improves a user query.
|
| 223 |
|
|
|
|
| 235 |
|
| 236 |
All agents have factory functions in `src.agent_factory.agents`:
|
| 237 |
|
| 238 |
+
```python
|
| 239 |
+
def create_knowledge_gap_agent(model: Any | None = None) -> KnowledgeGapAgent
|
| 240 |
+
def create_tool_selector_agent(model: Any | None = None) -> ToolSelectorAgent
|
| 241 |
+
def create_writer_agent(model: Any | None = None) -> WriterAgent
|
| 242 |
+
def create_long_writer_agent(model: Any | None = None) -> LongWriterAgent
|
| 243 |
+
def create_proofreader_agent(model: Any | None = None) -> ProofreaderAgent
|
| 244 |
+
def create_thinking_agent(model: Any | None = None) -> ThinkingAgent
|
| 245 |
+
def create_input_parser_agent(model: Any | None = None) -> InputParserAgent
|
| 246 |
+
```
|
| 247 |
|
| 248 |
**Parameters**:
|
| 249 |
- `model`: Optional Pydantic AI model. If None, uses `get_model()` from settings.
|
|
|
|
| 250 |
|
| 251 |
**Returns**: Agent instance.
|
| 252 |
|
|
|
|
| 255 |
- [Architecture - Agents](../architecture/agents.md) - Architecture overview
|
| 256 |
- [Models API](models.md) - Data models used by agents
|
| 257 |
|
| 258 |
+
|
| 259 |
+
|
| 260 |
+
|
| 261 |
+
|
| 262 |
+
|
| 263 |
+
|
| 264 |
+
|
| 265 |
+
|
| 266 |
+
|
docs/api/models.md
CHANGED
|
@@ -8,14 +8,18 @@ This page documents the Pydantic models used throughout DeepCritical.
|
|
| 8 |
|
| 9 |
**Purpose**: Represents evidence from search results.
|
| 10 |
|
| 11 |
-
|
| 12 |
-
|
| 13 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 14 |
|
| 15 |
**Fields**:
|
| 16 |
- `citation`: Citation information (title, URL, date, authors)
|
| 17 |
- `content`: Evidence text content
|
| 18 |
-
- `
|
| 19 |
- `metadata`: Additional metadata dictionary
|
| 20 |
|
| 21 |
## Citation
|
|
@@ -24,15 +28,18 @@ This page documents the Pydantic models used throughout DeepCritical.
|
|
| 24 |
|
| 25 |
**Purpose**: Citation information for evidence.
|
| 26 |
|
| 27 |
-
|
| 28 |
-
|
| 29 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 30 |
|
| 31 |
**Fields**:
|
| 32 |
-
- `source`: Source name (e.g., "pubmed", "clinicaltrials", "europepmc", "web", "rag")
|
| 33 |
- `title`: Article/trial title
|
| 34 |
- `url`: Source URL
|
| 35 |
-
- `date`: Publication date (
|
| 36 |
- `authors`: List of authors (optional)
|
| 37 |
|
| 38 |
## KnowledgeGapOutput
|
|
@@ -41,9 +48,11 @@ This page documents the Pydantic models used throughout DeepCritical.
|
|
| 41 |
|
| 42 |
**Purpose**: Output from knowledge gap evaluation.
|
| 43 |
|
| 44 |
-
|
| 45 |
-
|
| 46 |
-
|
|
|
|
|
|
|
| 47 |
|
| 48 |
**Fields**:
|
| 49 |
- `research_complete`: Boolean indicating if research is complete
|
|
@@ -55,9 +64,10 @@ This page documents the Pydantic models used throughout DeepCritical.
|
|
| 55 |
|
| 56 |
**Purpose**: Plan for tool/agent selection.
|
| 57 |
|
| 58 |
-
|
| 59 |
-
|
| 60 |
-
|
|
|
|
| 61 |
|
| 62 |
**Fields**:
|
| 63 |
- `tasks`: List of agent tasks to execute
|
|
@@ -68,15 +78,17 @@ This page documents the Pydantic models used throughout DeepCritical.
|
|
| 68 |
|
| 69 |
**Purpose**: Individual agent task.
|
| 70 |
|
| 71 |
-
|
| 72 |
-
|
| 73 |
-
|
|
|
|
|
|
|
|
|
|
| 74 |
|
| 75 |
**Fields**:
|
| 76 |
-
- `
|
| 77 |
-
- `
|
| 78 |
-
- `
|
| 79 |
-
- `entity_website`: The website of the entity being researched, if known (optional)
|
| 80 |
|
| 81 |
## ReportDraft
|
| 82 |
|
|
@@ -84,12 +96,17 @@ This page documents the Pydantic models used throughout DeepCritical.
|
|
| 84 |
|
| 85 |
**Purpose**: Draft structure for long-form reports.
|
| 86 |
|
| 87 |
-
|
| 88 |
-
|
| 89 |
-
|
|
|
|
|
|
|
|
|
|
| 90 |
|
| 91 |
**Fields**:
|
|
|
|
| 92 |
- `sections`: List of report sections
|
|
|
|
| 93 |
|
| 94 |
## ReportSection
|
| 95 |
|
|
@@ -97,13 +114,17 @@ This page documents the Pydantic models used throughout DeepCritical.
|
|
| 97 |
|
| 98 |
**Purpose**: Individual section in a report draft.
|
| 99 |
|
| 100 |
-
|
| 101 |
-
|
| 102 |
-
|
|
|
|
|
|
|
|
|
|
| 103 |
|
| 104 |
**Fields**:
|
| 105 |
-
- `
|
| 106 |
-
- `
|
|
|
|
| 107 |
|
| 108 |
## ParsedQuery
|
| 109 |
|
|
@@ -111,9 +132,14 @@ This page documents the Pydantic models used throughout DeepCritical.
|
|
| 111 |
|
| 112 |
**Purpose**: Parsed and improved query.
|
| 113 |
|
| 114 |
-
|
| 115 |
-
|
| 116 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 117 |
|
| 118 |
**Fields**:
|
| 119 |
- `original_query`: Original query string
|
|
@@ -128,12 +154,13 @@ This page documents the Pydantic models used throughout DeepCritical.
|
|
| 128 |
|
| 129 |
**Purpose**: Conversation history with iterations.
|
| 130 |
|
| 131 |
-
|
| 132 |
-
|
| 133 |
-
|
|
|
|
| 134 |
|
| 135 |
**Fields**:
|
| 136 |
-
- `
|
| 137 |
|
| 138 |
## IterationData
|
| 139 |
|
|
@@ -141,15 +168,23 @@ This page documents the Pydantic models used throughout DeepCritical.
|
|
| 141 |
|
| 142 |
**Purpose**: Data for a single iteration.
|
| 143 |
|
| 144 |
-
|
| 145 |
-
|
| 146 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 147 |
|
| 148 |
**Fields**:
|
| 149 |
-
- `
|
| 150 |
-
- `
|
| 151 |
-
- `
|
| 152 |
-
- `
|
|
|
|
|
|
|
| 153 |
|
| 154 |
## AgentEvent
|
| 155 |
|
|
@@ -157,9 +192,12 @@ This page documents the Pydantic models used throughout DeepCritical.
|
|
| 157 |
|
| 158 |
**Purpose**: Event emitted during research execution.
|
| 159 |
|
| 160 |
-
|
| 161 |
-
|
| 162 |
-
|
|
|
|
|
|
|
|
|
|
| 163 |
|
| 164 |
**Fields**:
|
| 165 |
- `type`: Event type (e.g., "started", "search_complete", "complete")
|
|
@@ -172,20 +210,35 @@ This page documents the Pydantic models used throughout DeepCritical.
|
|
| 172 |
|
| 173 |
**Purpose**: Current budget status.
|
| 174 |
|
| 175 |
-
|
| 176 |
-
|
| 177 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 178 |
|
| 179 |
**Fields**:
|
| 180 |
-
- `tokens_used`:
|
| 181 |
-
- `tokens_limit`: Token
|
| 182 |
-
- `time_elapsed_seconds`:
|
| 183 |
-
- `time_limit_seconds`: Time
|
| 184 |
-
- `iterations`:
|
| 185 |
-
- `iterations_limit`:
|
| 186 |
-
- `iteration_tokens`: Tokens used per iteration (iteration number -> token count)
|
| 187 |
|
| 188 |
## See Also
|
| 189 |
|
| 190 |
- [Architecture - Agents](../architecture/agents.md) - How models are used
|
| 191 |
- [Configuration](../configuration/index.md) - Model configuration
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 8 |
|
| 9 |
**Purpose**: Represents evidence from search results.
|
| 10 |
|
| 11 |
+
```python
|
| 12 |
+
class Evidence(BaseModel):
|
| 13 |
+
citation: Citation
|
| 14 |
+
content: str
|
| 15 |
+
relevance_score: float = Field(ge=0.0, le=1.0)
|
| 16 |
+
metadata: dict[str, Any] = Field(default_factory=dict)
|
| 17 |
+
```
|
| 18 |
|
| 19 |
**Fields**:
|
| 20 |
- `citation`: Citation information (title, URL, date, authors)
|
| 21 |
- `content`: Evidence text content
|
| 22 |
+
- `relevance_score`: Relevance score (0.0-1.0)
|
| 23 |
- `metadata`: Additional metadata dictionary
|
| 24 |
|
| 25 |
## Citation
|
|
|
|
| 28 |
|
| 29 |
**Purpose**: Citation information for evidence.
|
| 30 |
|
| 31 |
+
```python
|
| 32 |
+
class Citation(BaseModel):
|
| 33 |
+
title: str
|
| 34 |
+
url: str
|
| 35 |
+
date: str | None = None
|
| 36 |
+
authors: list[str] = Field(default_factory=list)
|
| 37 |
+
```
|
| 38 |
|
| 39 |
**Fields**:
|
|
|
|
| 40 |
- `title`: Article/trial title
|
| 41 |
- `url`: Source URL
|
| 42 |
+
- `date`: Publication date (optional)
|
| 43 |
- `authors`: List of authors (optional)
|
| 44 |
|
| 45 |
## KnowledgeGapOutput
|
|
|
|
| 48 |
|
| 49 |
**Purpose**: Output from knowledge gap evaluation.
|
| 50 |
|
| 51 |
+
```python
|
| 52 |
+
class KnowledgeGapOutput(BaseModel):
|
| 53 |
+
research_complete: bool
|
| 54 |
+
outstanding_gaps: list[str] = Field(default_factory=list)
|
| 55 |
+
```
|
| 56 |
|
| 57 |
**Fields**:
|
| 58 |
- `research_complete`: Boolean indicating if research is complete
|
|
|
|
| 64 |
|
| 65 |
**Purpose**: Plan for tool/agent selection.
|
| 66 |
|
| 67 |
+
```python
|
| 68 |
+
class AgentSelectionPlan(BaseModel):
|
| 69 |
+
tasks: list[AgentTask] = Field(default_factory=list)
|
| 70 |
+
```
|
| 71 |
|
| 72 |
**Fields**:
|
| 73 |
- `tasks`: List of agent tasks to execute
|
|
|
|
| 78 |
|
| 79 |
**Purpose**: Individual agent task.
|
| 80 |
|
| 81 |
+
```python
|
| 82 |
+
class AgentTask(BaseModel):
|
| 83 |
+
agent_name: str
|
| 84 |
+
query: str
|
| 85 |
+
context: dict[str, Any] = Field(default_factory=dict)
|
| 86 |
+
```
|
| 87 |
|
| 88 |
**Fields**:
|
| 89 |
+
- `agent_name`: Name of agent to use
|
| 90 |
+
- `query`: Task query
|
| 91 |
+
- `context`: Additional context dictionary
|
|
|
|
| 92 |
|
| 93 |
## ReportDraft
|
| 94 |
|
|
|
|
| 96 |
|
| 97 |
**Purpose**: Draft structure for long-form reports.
|
| 98 |
|
| 99 |
+
```python
|
| 100 |
+
class ReportDraft(BaseModel):
|
| 101 |
+
title: str
|
| 102 |
+
sections: list[ReportSection] = Field(default_factory=list)
|
| 103 |
+
references: list[Citation] = Field(default_factory=list)
|
| 104 |
+
```
|
| 105 |
|
| 106 |
**Fields**:
|
| 107 |
+
- `title`: Report title
|
| 108 |
- `sections`: List of report sections
|
| 109 |
+
- `references`: List of citations
|
| 110 |
|
| 111 |
## ReportSection
|
| 112 |
|
|
|
|
| 114 |
|
| 115 |
**Purpose**: Individual section in a report draft.
|
| 116 |
|
| 117 |
+
```python
|
| 118 |
+
class ReportSection(BaseModel):
|
| 119 |
+
title: str
|
| 120 |
+
content: str
|
| 121 |
+
order: int
|
| 122 |
+
```
|
| 123 |
|
| 124 |
**Fields**:
|
| 125 |
+
- `title`: Section title
|
| 126 |
+
- `content`: Section content
|
| 127 |
+
- `order`: Section order number
|
| 128 |
|
| 129 |
## ParsedQuery
|
| 130 |
|
|
|
|
| 132 |
|
| 133 |
**Purpose**: Parsed and improved query.
|
| 134 |
|
| 135 |
+
```python
|
| 136 |
+
class ParsedQuery(BaseModel):
|
| 137 |
+
original_query: str
|
| 138 |
+
improved_query: str
|
| 139 |
+
research_mode: Literal["iterative", "deep"]
|
| 140 |
+
key_entities: list[str] = Field(default_factory=list)
|
| 141 |
+
research_questions: list[str] = Field(default_factory=list)
|
| 142 |
+
```
|
| 143 |
|
| 144 |
**Fields**:
|
| 145 |
- `original_query`: Original query string
|
|
|
|
| 154 |
|
| 155 |
**Purpose**: Conversation history with iterations.
|
| 156 |
|
| 157 |
+
```python
|
| 158 |
+
class Conversation(BaseModel):
|
| 159 |
+
iterations: list[IterationData] = Field(default_factory=list)
|
| 160 |
+
```
|
| 161 |
|
| 162 |
**Fields**:
|
| 163 |
+
- `iterations`: List of iteration data
|
| 164 |
|
| 165 |
## IterationData
|
| 166 |
|
|
|
|
| 168 |
|
| 169 |
**Purpose**: Data for a single iteration.
|
| 170 |
|
| 171 |
+
```python
|
| 172 |
+
class IterationData(BaseModel):
|
| 173 |
+
iteration: int
|
| 174 |
+
observations: str | None = None
|
| 175 |
+
knowledge_gaps: list[str] = Field(default_factory=list)
|
| 176 |
+
tool_calls: list[dict[str, Any]] = Field(default_factory=list)
|
| 177 |
+
findings: str | None = None
|
| 178 |
+
thoughts: str | None = None
|
| 179 |
+
```
|
| 180 |
|
| 181 |
**Fields**:
|
| 182 |
+
- `iteration`: Iteration number
|
| 183 |
+
- `observations`: Generated observations
|
| 184 |
+
- `knowledge_gaps`: Identified knowledge gaps
|
| 185 |
+
- `tool_calls`: Tool calls made
|
| 186 |
+
- `findings`: Findings from tools
|
| 187 |
+
- `thoughts`: Agent thoughts
|
| 188 |
|
| 189 |
## AgentEvent
|
| 190 |
|
|
|
|
| 192 |
|
| 193 |
**Purpose**: Event emitted during research execution.
|
| 194 |
|
| 195 |
+
```python
|
| 196 |
+
class AgentEvent(BaseModel):
|
| 197 |
+
type: str
|
| 198 |
+
iteration: int | None = None
|
| 199 |
+
data: dict[str, Any] = Field(default_factory=dict)
|
| 200 |
+
```
|
| 201 |
|
| 202 |
**Fields**:
|
| 203 |
- `type`: Event type (e.g., "started", "search_complete", "complete")
|
|
|
|
| 210 |
|
| 211 |
**Purpose**: Current budget status.
|
| 212 |
|
| 213 |
+
```python
|
| 214 |
+
class BudgetStatus(BaseModel):
|
| 215 |
+
tokens_used: int
|
| 216 |
+
tokens_limit: int
|
| 217 |
+
time_elapsed_seconds: float
|
| 218 |
+
time_limit_seconds: float
|
| 219 |
+
iterations: int
|
| 220 |
+
iterations_limit: int
|
| 221 |
+
```
|
| 222 |
|
| 223 |
**Fields**:
|
| 224 |
+
- `tokens_used`: Tokens used so far
|
| 225 |
+
- `tokens_limit`: Token limit
|
| 226 |
+
- `time_elapsed_seconds`: Elapsed time in seconds
|
| 227 |
+
- `time_limit_seconds`: Time limit in seconds
|
| 228 |
+
- `iterations`: Current iteration count
|
| 229 |
+
- `iterations_limit`: Iteration limit
|
|
|
|
| 230 |
|
| 231 |
## See Also
|
| 232 |
|
| 233 |
- [Architecture - Agents](../architecture/agents.md) - How models are used
|
| 234 |
- [Configuration](../configuration/index.md) - Model configuration
|
| 235 |
+
|
| 236 |
+
|
| 237 |
+
|
| 238 |
+
|
| 239 |
+
|
| 240 |
+
|
| 241 |
+
|
| 242 |
+
|
| 243 |
+
|
| 244 |
+
|
docs/api/orchestrators.md
CHANGED
|
@@ -12,24 +12,33 @@ This page documents the API for DeepCritical orchestrators.
|
|
| 12 |
|
| 13 |
#### `run`
|
| 14 |
|
| 15 |
-
|
| 16 |
-
|
| 17 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 18 |
|
| 19 |
Runs iterative research flow.
|
| 20 |
|
| 21 |
**Parameters**:
|
| 22 |
- `query`: Research query string
|
| 23 |
- `background_context`: Background context (default: "")
|
| 24 |
-
- `
|
| 25 |
-
- `
|
| 26 |
-
- `
|
| 27 |
-
|
| 28 |
-
**
|
| 29 |
-
|
| 30 |
-
|
| 31 |
-
|
| 32 |
-
|
|
|
|
|
|
|
| 33 |
|
| 34 |
## DeepResearchFlow
|
| 35 |
|
|
@@ -41,21 +50,33 @@ Runs iterative research flow.
|
|
| 41 |
|
| 42 |
#### `run`
|
| 43 |
|
| 44 |
-
|
| 45 |
-
|
| 46 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 47 |
|
| 48 |
Runs deep research flow.
|
| 49 |
|
| 50 |
**Parameters**:
|
| 51 |
- `query`: Research query string
|
| 52 |
-
- `
|
| 53 |
-
|
| 54 |
-
|
| 55 |
-
|
| 56 |
-
|
| 57 |
-
|
| 58 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 59 |
|
| 60 |
## GraphOrchestrator
|
| 61 |
|
|
@@ -67,22 +88,24 @@ Runs deep research flow.
|
|
| 67 |
|
| 68 |
#### `run`
|
| 69 |
|
| 70 |
-
|
| 71 |
-
|
| 72 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 73 |
|
| 74 |
Runs graph-based research orchestration.
|
| 75 |
|
| 76 |
**Parameters**:
|
| 77 |
- `query`: Research query string
|
| 78 |
-
- `
|
|
|
|
| 79 |
|
| 80 |
**Yields**: `AgentEvent` objects during graph execution.
|
| 81 |
|
| 82 |
-
**Note**:
|
| 83 |
-
- `research_mode` and `use_graph` are constructor parameters, not `run()` parameters.
|
| 84 |
-
- The `message_history` parameter enables multi-turn conversations by providing context from previous interactions. Message history is stored in `GraphExecutionContext` and passed to agents during execution.
|
| 85 |
-
|
| 86 |
## Orchestrator Factory
|
| 87 |
|
| 88 |
**Module**: `src.orchestrator_factory`
|
|
@@ -93,18 +116,22 @@ Runs graph-based research orchestration.
|
|
| 93 |
|
| 94 |
#### `create_orchestrator`
|
| 95 |
|
| 96 |
-
|
| 97 |
-
|
| 98 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 99 |
|
| 100 |
Creates an orchestrator instance.
|
| 101 |
|
| 102 |
**Parameters**:
|
| 103 |
-
- `search_handler`: Search handler protocol implementation
|
| 104 |
-
- `judge_handler`: Judge handler protocol implementation
|
| 105 |
-
- `config`: Configuration
|
| 106 |
-
- `mode`: Orchestrator mode ("simple", "advanced", "magentic",
|
| 107 |
-
- `oauth_token`: Optional OAuth token from HuggingFace login (takes priority over env vars)
|
| 108 |
|
| 109 |
**Returns**: Orchestrator instance.
|
| 110 |
|
|
@@ -126,19 +153,24 @@ Creates an orchestrator instance.
|
|
| 126 |
|
| 127 |
#### `run`
|
| 128 |
|
| 129 |
-
|
| 130 |
-
|
| 131 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 132 |
|
| 133 |
Runs Magentic orchestration.
|
| 134 |
|
| 135 |
**Parameters**:
|
| 136 |
- `query`: Research query string
|
|
|
|
|
|
|
| 137 |
|
| 138 |
**Yields**: `AgentEvent` objects converted from Magentic events.
|
| 139 |
|
| 140 |
-
**Note**: `max_rounds` and `max_stalls` are constructor parameters, not `run()` parameters.
|
| 141 |
-
|
| 142 |
**Requirements**:
|
| 143 |
- `agent-framework-core` package
|
| 144 |
- OpenAI API key
|
|
@@ -146,4 +178,14 @@ Runs Magentic orchestration.
|
|
| 146 |
## See Also
|
| 147 |
|
| 148 |
- [Architecture - Orchestrators](../architecture/orchestrators.md) - Architecture overview
|
| 149 |
-
- [Graph Orchestration](../architecture/
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 12 |
|
| 13 |
#### `run`
|
| 14 |
|
| 15 |
+
```python
|
| 16 |
+
async def run(
|
| 17 |
+
self,
|
| 18 |
+
query: str,
|
| 19 |
+
background_context: str = "",
|
| 20 |
+
max_iterations: int | None = None,
|
| 21 |
+
max_time_minutes: float | None = None,
|
| 22 |
+
token_budget: int | None = None
|
| 23 |
+
) -> AsyncGenerator[AgentEvent, None]
|
| 24 |
+
```
|
| 25 |
|
| 26 |
Runs iterative research flow.
|
| 27 |
|
| 28 |
**Parameters**:
|
| 29 |
- `query`: Research query string
|
| 30 |
- `background_context`: Background context (default: "")
|
| 31 |
+
- `max_iterations`: Maximum iterations (default: from settings)
|
| 32 |
+
- `max_time_minutes`: Maximum time in minutes (default: from settings)
|
| 33 |
+
- `token_budget`: Token budget (default: from settings)
|
| 34 |
+
|
| 35 |
+
**Yields**: `AgentEvent` objects for:
|
| 36 |
+
- `started`: Research started
|
| 37 |
+
- `search_complete`: Search completed
|
| 38 |
+
- `judge_complete`: Evidence evaluation completed
|
| 39 |
+
- `synthesizing`: Generating report
|
| 40 |
+
- `complete`: Research completed
|
| 41 |
+
- `error`: Error occurred
|
| 42 |
|
| 43 |
## DeepResearchFlow
|
| 44 |
|
|
|
|
| 50 |
|
| 51 |
#### `run`
|
| 52 |
|
| 53 |
+
```python
|
| 54 |
+
async def run(
|
| 55 |
+
self,
|
| 56 |
+
query: str,
|
| 57 |
+
background_context: str = "",
|
| 58 |
+
max_iterations_per_section: int | None = None,
|
| 59 |
+
max_time_minutes: float | None = None,
|
| 60 |
+
token_budget: int | None = None
|
| 61 |
+
) -> AsyncGenerator[AgentEvent, None]
|
| 62 |
+
```
|
| 63 |
|
| 64 |
Runs deep research flow.
|
| 65 |
|
| 66 |
**Parameters**:
|
| 67 |
- `query`: Research query string
|
| 68 |
+
- `background_context`: Background context (default: "")
|
| 69 |
+
- `max_iterations_per_section`: Maximum iterations per section (default: from settings)
|
| 70 |
+
- `max_time_minutes`: Maximum time in minutes (default: from settings)
|
| 71 |
+
- `token_budget`: Token budget (default: from settings)
|
| 72 |
+
|
| 73 |
+
**Yields**: `AgentEvent` objects for:
|
| 74 |
+
- `started`: Research started
|
| 75 |
+
- `planning`: Creating research plan
|
| 76 |
+
- `looping`: Running parallel research loops
|
| 77 |
+
- `synthesizing`: Synthesizing results
|
| 78 |
+
- `complete`: Research completed
|
| 79 |
+
- `error`: Error occurred
|
| 80 |
|
| 81 |
## GraphOrchestrator
|
| 82 |
|
|
|
|
| 88 |
|
| 89 |
#### `run`
|
| 90 |
|
| 91 |
+
```python
|
| 92 |
+
async def run(
|
| 93 |
+
self,
|
| 94 |
+
query: str,
|
| 95 |
+
research_mode: str = "auto",
|
| 96 |
+
use_graph: bool = True
|
| 97 |
+
) -> AsyncGenerator[AgentEvent, None]
|
| 98 |
+
```
|
| 99 |
|
| 100 |
Runs graph-based research orchestration.
|
| 101 |
|
| 102 |
**Parameters**:
|
| 103 |
- `query`: Research query string
|
| 104 |
+
- `research_mode`: Research mode ("iterative", "deep", or "auto")
|
| 105 |
+
- `use_graph`: Whether to use graph execution (default: True)
|
| 106 |
|
| 107 |
**Yields**: `AgentEvent` objects during graph execution.
|
| 108 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 109 |
## Orchestrator Factory
|
| 110 |
|
| 111 |
**Module**: `src.orchestrator_factory`
|
|
|
|
| 116 |
|
| 117 |
#### `create_orchestrator`
|
| 118 |
|
| 119 |
+
```python
|
| 120 |
+
def create_orchestrator(
|
| 121 |
+
search_handler: SearchHandlerProtocol,
|
| 122 |
+
judge_handler: JudgeHandlerProtocol,
|
| 123 |
+
config: dict[str, Any],
|
| 124 |
+
mode: str | None = None
|
| 125 |
+
) -> Any
|
| 126 |
+
```
|
| 127 |
|
| 128 |
Creates an orchestrator instance.
|
| 129 |
|
| 130 |
**Parameters**:
|
| 131 |
+
- `search_handler`: Search handler protocol implementation
|
| 132 |
+
- `judge_handler`: Judge handler protocol implementation
|
| 133 |
+
- `config`: Configuration dictionary
|
| 134 |
+
- `mode`: Orchestrator mode ("simple", "advanced", "magentic", or None for auto-detect)
|
|
|
|
| 135 |
|
| 136 |
**Returns**: Orchestrator instance.
|
| 137 |
|
|
|
|
| 153 |
|
| 154 |
#### `run`
|
| 155 |
|
| 156 |
+
```python
|
| 157 |
+
async def run(
|
| 158 |
+
self,
|
| 159 |
+
query: str,
|
| 160 |
+
max_rounds: int = 15,
|
| 161 |
+
max_stalls: int = 3
|
| 162 |
+
) -> AsyncGenerator[AgentEvent, None]
|
| 163 |
+
```
|
| 164 |
|
| 165 |
Runs Magentic orchestration.
|
| 166 |
|
| 167 |
**Parameters**:
|
| 168 |
- `query`: Research query string
|
| 169 |
+
- `max_rounds`: Maximum rounds (default: 15)
|
| 170 |
+
- `max_stalls`: Maximum stalls before reset (default: 3)
|
| 171 |
|
| 172 |
**Yields**: `AgentEvent` objects converted from Magentic events.
|
| 173 |
|
|
|
|
|
|
|
| 174 |
**Requirements**:
|
| 175 |
- `agent-framework-core` package
|
| 176 |
- OpenAI API key
|
|
|
|
| 178 |
## See Also
|
| 179 |
|
| 180 |
- [Architecture - Orchestrators](../architecture/orchestrators.md) - Architecture overview
|
| 181 |
+
- [Graph Orchestration](../architecture/graph-orchestration.md) - Graph execution details
|
| 182 |
+
|
| 183 |
+
|
| 184 |
+
|
| 185 |
+
|
| 186 |
+
|
| 187 |
+
|
| 188 |
+
|
| 189 |
+
|
| 190 |
+
|
| 191 |
+
|
docs/api/services.md
CHANGED
|
@@ -12,9 +12,9 @@ This page documents the API for DeepCritical services.
|
|
| 12 |
|
| 13 |
#### `embed`
|
| 14 |
|
| 15 |
-
|
| 16 |
-
|
| 17 |
-
|
| 18 |
|
| 19 |
Generates embedding for a text string.
|
| 20 |
|
|
@@ -68,60 +68,6 @@ Finds duplicate texts based on similarity threshold.
|
|
| 68 |
|
| 69 |
**Returns**: List of (index1, index2) tuples for duplicate pairs.
|
| 70 |
|
| 71 |
-
#### `add_evidence`
|
| 72 |
-
|
| 73 |
-
```python
|
| 74 |
-
async def add_evidence(
|
| 75 |
-
self,
|
| 76 |
-
evidence_id: str,
|
| 77 |
-
content: str,
|
| 78 |
-
metadata: dict[str, Any]
|
| 79 |
-
) -> None
|
| 80 |
-
```
|
| 81 |
-
|
| 82 |
-
Adds evidence to vector store for semantic search.
|
| 83 |
-
|
| 84 |
-
**Parameters**:
|
| 85 |
-
- `evidence_id`: Unique identifier for the evidence
|
| 86 |
-
- `content`: Evidence text content
|
| 87 |
-
- `metadata`: Additional metadata dictionary
|
| 88 |
-
|
| 89 |
-
#### `search_similar`
|
| 90 |
-
|
| 91 |
-
```python
|
| 92 |
-
async def search_similar(
|
| 93 |
-
self,
|
| 94 |
-
query: str,
|
| 95 |
-
n_results: int = 5
|
| 96 |
-
) -> list[dict[str, Any]]
|
| 97 |
-
```
|
| 98 |
-
|
| 99 |
-
Finds semantically similar evidence.
|
| 100 |
-
|
| 101 |
-
**Parameters**:
|
| 102 |
-
- `query`: Search query string
|
| 103 |
-
- `n_results`: Number of results to return (default: 5)
|
| 104 |
-
|
| 105 |
-
**Returns**: List of dictionaries with `id`, `content`, `metadata`, and `distance` keys.
|
| 106 |
-
|
| 107 |
-
#### `deduplicate`
|
| 108 |
-
|
| 109 |
-
```python
|
| 110 |
-
async def deduplicate(
|
| 111 |
-
self,
|
| 112 |
-
new_evidence: list[Evidence],
|
| 113 |
-
threshold: float = 0.9
|
| 114 |
-
) -> list[Evidence]
|
| 115 |
-
```
|
| 116 |
-
|
| 117 |
-
Removes semantically duplicate evidence.
|
| 118 |
-
|
| 119 |
-
**Parameters**:
|
| 120 |
-
- `new_evidence`: List of evidence items to deduplicate
|
| 121 |
-
- `threshold`: Similarity threshold (default: 0.9, where 0.9 = 90% similar is duplicate)
|
| 122 |
-
|
| 123 |
-
**Returns**: List of unique evidence items (not already in vector store).
|
| 124 |
-
|
| 125 |
### Factory Function
|
| 126 |
|
| 127 |
#### `get_embedding_service`
|
|
@@ -143,97 +89,63 @@ Returns singleton EmbeddingService instance.
|
|
| 143 |
|
| 144 |
#### `ingest_evidence`
|
| 145 |
|
| 146 |
-
|
| 147 |
-
|
| 148 |
-
|
| 149 |
|
| 150 |
Ingests evidence into RAG service.
|
| 151 |
|
| 152 |
**Parameters**:
|
| 153 |
-
- `
|
| 154 |
|
| 155 |
-
**Note**:
|
| 156 |
|
| 157 |
#### `retrieve`
|
| 158 |
|
| 159 |
```python
|
| 160 |
-
def retrieve(
|
| 161 |
self,
|
| 162 |
query: str,
|
| 163 |
-
top_k: int
|
| 164 |
-
) -> list[
|
| 165 |
```
|
| 166 |
|
| 167 |
Retrieves relevant documents for a query.
|
| 168 |
|
| 169 |
**Parameters**:
|
| 170 |
- `query`: Search query string
|
| 171 |
-
- `top_k`: Number of top results to return (
|
| 172 |
|
| 173 |
-
**Returns**: List of
|
| 174 |
|
| 175 |
#### `query`
|
| 176 |
|
| 177 |
```python
|
| 178 |
-
def query(
|
| 179 |
self,
|
| 180 |
-
|
| 181 |
-
top_k: int
|
| 182 |
) -> str
|
| 183 |
```
|
| 184 |
|
| 185 |
-
Queries RAG service and returns
|
| 186 |
-
|
| 187 |
-
**Parameters**:
|
| 188 |
-
- `query_str`: Query string
|
| 189 |
-
- `top_k`: Number of results to use (defaults to `similarity_top_k` from constructor)
|
| 190 |
-
|
| 191 |
-
**Returns**: Synthesized response string.
|
| 192 |
-
|
| 193 |
-
**Raises**:
|
| 194 |
-
- `ConfigurationError`: If no LLM API key is available for query synthesis
|
| 195 |
-
|
| 196 |
-
#### `ingest_documents`
|
| 197 |
-
|
| 198 |
-
```python
|
| 199 |
-
def ingest_documents(self, documents: list[Any]) -> None
|
| 200 |
-
```
|
| 201 |
-
|
| 202 |
-
Ingests raw LlamaIndex Documents.
|
| 203 |
|
| 204 |
**Parameters**:
|
| 205 |
-
- `
|
| 206 |
-
|
| 207 |
-
#### `clear_collection`
|
| 208 |
-
|
| 209 |
-
```python
|
| 210 |
-
def clear_collection(self) -> None
|
| 211 |
-
```
|
| 212 |
|
| 213 |
-
|
| 214 |
|
| 215 |
### Factory Function
|
| 216 |
|
| 217 |
#### `get_rag_service`
|
| 218 |
|
| 219 |
```python
|
| 220 |
-
|
| 221 |
-
|
| 222 |
-
oauth_token: str | None = None,
|
| 223 |
-
**kwargs: Any
|
| 224 |
-
) -> LlamaIndexRAGService
|
| 225 |
```
|
| 226 |
|
| 227 |
-
|
| 228 |
-
|
| 229 |
-
**Parameters**:
|
| 230 |
-
- `collection_name`: Name of the ChromaDB collection (default: "deepcritical_evidence")
|
| 231 |
-
- `oauth_token`: Optional OAuth token from HuggingFace login (takes priority over env vars)
|
| 232 |
-
- `**kwargs`: Additional arguments for LlamaIndexRAGService (e.g., `use_openai_embeddings=False`)
|
| 233 |
-
|
| 234 |
-
**Returns**: Configured LlamaIndexRAGService instance.
|
| 235 |
-
|
| 236 |
-
**Note**: By default, uses local embeddings (sentence-transformers) which require no API keys.
|
| 237 |
|
| 238 |
## StatisticalAnalyzer
|
| 239 |
|
|
@@ -248,27 +160,24 @@ Get or create a RAG service instance.
|
|
| 248 |
```python
|
| 249 |
async def analyze(
|
| 250 |
self,
|
| 251 |
-
|
| 252 |
evidence: list[Evidence],
|
| 253 |
-
|
| 254 |
) -> AnalysisResult
|
| 255 |
```
|
| 256 |
|
| 257 |
-
Analyzes a
|
| 258 |
|
| 259 |
**Parameters**:
|
| 260 |
-
- `
|
| 261 |
-
- `evidence`: List of Evidence objects
|
| 262 |
-
- `
|
| 263 |
|
| 264 |
**Returns**: `AnalysisResult` with:
|
| 265 |
- `verdict`: SUPPORTED, REFUTED, or INCONCLUSIVE
|
| 266 |
-
- `
|
| 267 |
-
- `
|
| 268 |
-
- `
|
| 269 |
-
- `execution_output`: Output from code execution
|
| 270 |
-
- `key_takeaways`: Key takeaways from analysis
|
| 271 |
-
- `limitations`: List of limitations
|
| 272 |
|
| 273 |
**Note**: Requires Modal credentials for sandbox execution.
|
| 274 |
|
|
@@ -277,3 +186,12 @@ Analyzes a research question using statistical methods.
|
|
| 277 |
- [Architecture - Services](../architecture/services.md) - Architecture overview
|
| 278 |
- [Configuration](../configuration/index.md) - Service configuration
|
| 279 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 12 |
|
| 13 |
#### `embed`
|
| 14 |
|
| 15 |
+
```python
|
| 16 |
+
async def embed(self, text: str) -> list[float]
|
| 17 |
+
```
|
| 18 |
|
| 19 |
Generates embedding for a text string.
|
| 20 |
|
|
|
|
| 68 |
|
| 69 |
**Returns**: List of (index1, index2) tuples for duplicate pairs.
|
| 70 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 71 |
### Factory Function
|
| 72 |
|
| 73 |
#### `get_embedding_service`
|
|
|
|
| 89 |
|
| 90 |
#### `ingest_evidence`
|
| 91 |
|
| 92 |
+
```python
|
| 93 |
+
async def ingest_evidence(self, evidence: list[Evidence]) -> None
|
| 94 |
+
```
|
| 95 |
|
| 96 |
Ingests evidence into RAG service.
|
| 97 |
|
| 98 |
**Parameters**:
|
| 99 |
+
- `evidence`: List of Evidence objects to ingest
|
| 100 |
|
| 101 |
+
**Note**: Requires OpenAI API key for embeddings.
|
| 102 |
|
| 103 |
#### `retrieve`
|
| 104 |
|
| 105 |
```python
|
| 106 |
+
async def retrieve(
|
| 107 |
self,
|
| 108 |
query: str,
|
| 109 |
+
top_k: int = 5
|
| 110 |
+
) -> list[Document]
|
| 111 |
```
|
| 112 |
|
| 113 |
Retrieves relevant documents for a query.
|
| 114 |
|
| 115 |
**Parameters**:
|
| 116 |
- `query`: Search query string
|
| 117 |
+
- `top_k`: Number of top results to return (default: 5)
|
| 118 |
|
| 119 |
+
**Returns**: List of Document objects with metadata.
|
| 120 |
|
| 121 |
#### `query`
|
| 122 |
|
| 123 |
```python
|
| 124 |
+
async def query(
|
| 125 |
self,
|
| 126 |
+
query: str,
|
| 127 |
+
top_k: int = 5
|
| 128 |
) -> str
|
| 129 |
```
|
| 130 |
|
| 131 |
+
Queries RAG service and returns formatted results.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 132 |
|
| 133 |
**Parameters**:
|
| 134 |
+
- `query`: Search query string
|
| 135 |
+
- `top_k`: Number of top results to return (default: 5)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 136 |
|
| 137 |
+
**Returns**: Formatted query results as string.
|
| 138 |
|
| 139 |
### Factory Function
|
| 140 |
|
| 141 |
#### `get_rag_service`
|
| 142 |
|
| 143 |
```python
|
| 144 |
+
@lru_cache(maxsize=1)
|
| 145 |
+
def get_rag_service() -> LlamaIndexRAGService | None
|
|
|
|
|
|
|
|
|
|
| 146 |
```
|
| 147 |
|
| 148 |
+
Returns singleton LlamaIndexRAGService instance, or None if OpenAI key not available.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 149 |
|
| 150 |
## StatisticalAnalyzer
|
| 151 |
|
|
|
|
| 160 |
```python
|
| 161 |
async def analyze(
|
| 162 |
self,
|
| 163 |
+
hypothesis: str,
|
| 164 |
evidence: list[Evidence],
|
| 165 |
+
data_description: str | None = None
|
| 166 |
) -> AnalysisResult
|
| 167 |
```
|
| 168 |
|
| 169 |
+
Analyzes a hypothesis using statistical methods.
|
| 170 |
|
| 171 |
**Parameters**:
|
| 172 |
+
- `hypothesis`: Hypothesis to analyze
|
| 173 |
+
- `evidence`: List of Evidence objects
|
| 174 |
+
- `data_description`: Optional data description
|
| 175 |
|
| 176 |
**Returns**: `AnalysisResult` with:
|
| 177 |
- `verdict`: SUPPORTED, REFUTED, or INCONCLUSIVE
|
| 178 |
+
- `code`: Generated analysis code
|
| 179 |
+
- `output`: Execution output
|
| 180 |
+
- `error`: Error message if execution failed
|
|
|
|
|
|
|
|
|
|
| 181 |
|
| 182 |
**Note**: Requires Modal credentials for sandbox execution.
|
| 183 |
|
|
|
|
| 186 |
- [Architecture - Services](../architecture/services.md) - Architecture overview
|
| 187 |
- [Configuration](../configuration/index.md) - Service configuration
|
| 188 |
|
| 189 |
+
|
| 190 |
+
|
| 191 |
+
|
| 192 |
+
|
| 193 |
+
|
| 194 |
+
|
| 195 |
+
|
| 196 |
+
|
| 197 |
+
|
docs/api/tools.md
CHANGED
|
@@ -56,10 +56,8 @@ Searches PubMed for articles.
|
|
| 56 |
**Returns**: List of `Evidence` objects with PubMed articles.
|
| 57 |
|
| 58 |
**Raises**:
|
| 59 |
-
- `SearchError`: If search fails
|
| 60 |
-
- `RateLimitError`: If rate limit is exceeded
|
| 61 |
-
|
| 62 |
-
**Note**: Uses NCBI E-utilities (ESearch → EFetch). Rate limit: 0.34s between requests. Handles single vs. multiple articles.
|
| 63 |
|
| 64 |
## ClinicalTrialsTool
|
| 65 |
|
|
@@ -98,10 +96,10 @@ Searches ClinicalTrials.gov for trials.
|
|
| 98 |
|
| 99 |
**Returns**: List of `Evidence` objects with clinical trials.
|
| 100 |
|
| 101 |
-
**Note**: Only returns interventional studies with status: COMPLETED, ACTIVE_NOT_RECRUITING, RECRUITING, ENROLLING_BY_INVITATION
|
| 102 |
|
| 103 |
**Raises**:
|
| 104 |
-
- `SearchError`: If search fails
|
| 105 |
|
| 106 |
## EuropePMCTool
|
| 107 |
|
|
@@ -140,10 +138,10 @@ Searches Europe PMC for articles and preprints.
|
|
| 140 |
|
| 141 |
**Returns**: List of `Evidence` objects with articles/preprints.
|
| 142 |
|
| 143 |
-
**Note**: Includes both preprints (marked with `[PREPRINT - Not peer-reviewed]`) and peer-reviewed articles.
|
| 144 |
|
| 145 |
**Raises**:
|
| 146 |
-
- `SearchError`: If search fails
|
| 147 |
|
| 148 |
## RAGTool
|
| 149 |
|
|
@@ -151,20 +149,6 @@ Searches Europe PMC for articles and preprints.
|
|
| 151 |
|
| 152 |
**Purpose**: Semantic search within collected evidence.
|
| 153 |
|
| 154 |
-
### Initialization
|
| 155 |
-
|
| 156 |
-
```python
|
| 157 |
-
def __init__(
|
| 158 |
-
self,
|
| 159 |
-
rag_service: LlamaIndexRAGService | None = None,
|
| 160 |
-
oauth_token: str | None = None
|
| 161 |
-
) -> None
|
| 162 |
-
```
|
| 163 |
-
|
| 164 |
-
**Parameters**:
|
| 165 |
-
- `rag_service`: Optional RAG service instance. If None, will be lazy-initialized.
|
| 166 |
-
- `oauth_token`: Optional OAuth token from HuggingFace login (for RAG LLM)
|
| 167 |
-
|
| 168 |
### Properties
|
| 169 |
|
| 170 |
#### `name`
|
|
@@ -196,10 +180,7 @@ Searches collected evidence using semantic similarity.
|
|
| 196 |
|
| 197 |
**Returns**: List of `Evidence` objects from collected evidence.
|
| 198 |
|
| 199 |
-
**
|
| 200 |
-
- `ConfigurationError`: If RAG service is unavailable
|
| 201 |
-
|
| 202 |
-
**Note**: Requires evidence to be ingested into RAG service first. Wraps `LlamaIndexRAGService`. Returns Evidence from RAG results.
|
| 203 |
|
| 204 |
## SearchHandler
|
| 205 |
|
|
@@ -207,53 +188,44 @@ Searches collected evidence using semantic similarity.
|
|
| 207 |
|
| 208 |
**Purpose**: Orchestrates parallel searches across multiple tools.
|
| 209 |
|
| 210 |
-
###
|
|
|
|
|
|
|
| 211 |
|
| 212 |
```python
|
| 213 |
-
def
|
| 214 |
self,
|
| 215 |
-
|
| 216 |
-
|
| 217 |
-
|
| 218 |
-
|
| 219 |
-
oauth_token: str | None = None
|
| 220 |
-
) -> None
|
| 221 |
```
|
| 222 |
|
| 223 |
-
**Parameters**:
|
| 224 |
-
- `tools`: List of search tools to use
|
| 225 |
-
- `timeout`: Timeout for each search in seconds (default: 30.0)
|
| 226 |
-
- `include_rag`: Whether to include RAG tool in searches (default: False)
|
| 227 |
-
- `auto_ingest_to_rag`: Whether to automatically ingest results into RAG (default: True)
|
| 228 |
-
- `oauth_token`: Optional OAuth token from HuggingFace login (for RAG LLM)
|
| 229 |
-
|
| 230 |
-
### Methods
|
| 231 |
-
|
| 232 |
-
#### `execute`
|
| 233 |
-
|
| 234 |
-
<!--codeinclude-->
|
| 235 |
-
[SearchHandler.execute](../src/tools/search_handler.py) start_line:86 end_line:86
|
| 236 |
-
<!--/codeinclude-->
|
| 237 |
-
|
| 238 |
Searches multiple tools in parallel.
|
| 239 |
|
| 240 |
**Parameters**:
|
| 241 |
- `query`: Search query string
|
|
|
|
| 242 |
- `max_results_per_tool`: Maximum results per tool (default: 10)
|
| 243 |
|
| 244 |
**Returns**: `SearchResult` with:
|
| 245 |
-
- `query`: The search query
|
| 246 |
- `evidence`: Aggregated list of evidence
|
| 247 |
-
- `
|
| 248 |
-
- `
|
| 249 |
-
- `errors`: List of error messages from failed tools
|
| 250 |
|
| 251 |
-
**
|
| 252 |
-
- `SearchError`: If search times out
|
| 253 |
-
|
| 254 |
-
**Note**: Uses `asyncio.gather()` for parallel execution. Handles tool failures gracefully (returns errors in `SearchResult.errors`). Automatically ingests evidence into RAG if enabled.
|
| 255 |
|
| 256 |
## See Also
|
| 257 |
|
| 258 |
- [Architecture - Tools](../architecture/tools.md) - Architecture overview
|
| 259 |
- [Models API](models.md) - Data models used by tools
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 56 |
**Returns**: List of `Evidence` objects with PubMed articles.
|
| 57 |
|
| 58 |
**Raises**:
|
| 59 |
+
- `SearchError`: If search fails
|
| 60 |
+
- `RateLimitError`: If rate limit is exceeded
|
|
|
|
|
|
|
| 61 |
|
| 62 |
## ClinicalTrialsTool
|
| 63 |
|
|
|
|
| 96 |
|
| 97 |
**Returns**: List of `Evidence` objects with clinical trials.
|
| 98 |
|
| 99 |
+
**Note**: Only returns interventional studies with status: COMPLETED, ACTIVE_NOT_RECRUITING, RECRUITING, ENROLLING_BY_INVITATION
|
| 100 |
|
| 101 |
**Raises**:
|
| 102 |
+
- `SearchError`: If search fails
|
| 103 |
|
| 104 |
## EuropePMCTool
|
| 105 |
|
|
|
|
| 138 |
|
| 139 |
**Returns**: List of `Evidence` objects with articles/preprints.
|
| 140 |
|
| 141 |
+
**Note**: Includes both preprints (marked with `[PREPRINT - Not peer-reviewed]`) and peer-reviewed articles.
|
| 142 |
|
| 143 |
**Raises**:
|
| 144 |
+
- `SearchError`: If search fails
|
| 145 |
|
| 146 |
## RAGTool
|
| 147 |
|
|
|
|
| 149 |
|
| 150 |
**Purpose**: Semantic search within collected evidence.
|
| 151 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 152 |
### Properties
|
| 153 |
|
| 154 |
#### `name`
|
|
|
|
| 180 |
|
| 181 |
**Returns**: List of `Evidence` objects from collected evidence.
|
| 182 |
|
| 183 |
+
**Note**: Requires evidence to be ingested into RAG service first.
|
|
|
|
|
|
|
|
|
|
| 184 |
|
| 185 |
## SearchHandler
|
| 186 |
|
|
|
|
| 188 |
|
| 189 |
**Purpose**: Orchestrates parallel searches across multiple tools.
|
| 190 |
|
| 191 |
+
### Methods
|
| 192 |
+
|
| 193 |
+
#### `search`
|
| 194 |
|
| 195 |
```python
|
| 196 |
+
async def search(
|
| 197 |
self,
|
| 198 |
+
query: str,
|
| 199 |
+
tools: list[SearchTool] | None = None,
|
| 200 |
+
max_results_per_tool: int = 10
|
| 201 |
+
) -> SearchResult
|
|
|
|
|
|
|
| 202 |
```
|
| 203 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 204 |
Searches multiple tools in parallel.
|
| 205 |
|
| 206 |
**Parameters**:
|
| 207 |
- `query`: Search query string
|
| 208 |
+
- `tools`: List of tools to use (default: all available tools)
|
| 209 |
- `max_results_per_tool`: Maximum results per tool (default: 10)
|
| 210 |
|
| 211 |
**Returns**: `SearchResult` with:
|
|
|
|
| 212 |
- `evidence`: Aggregated list of evidence
|
| 213 |
+
- `tool_results`: Results per tool
|
| 214 |
+
- `total_count`: Total number of results
|
|
|
|
| 215 |
|
| 216 |
+
**Note**: Uses `asyncio.gather()` for parallel execution. Handles tool failures gracefully.
|
|
|
|
|
|
|
|
|
|
| 217 |
|
| 218 |
## See Also
|
| 219 |
|
| 220 |
- [Architecture - Tools](../architecture/tools.md) - Architecture overview
|
| 221 |
- [Models API](models.md) - Data models used by tools
|
| 222 |
+
|
| 223 |
+
|
| 224 |
+
|
| 225 |
+
|
| 226 |
+
|
| 227 |
+
|
| 228 |
+
|
| 229 |
+
|
| 230 |
+
|
| 231 |
+
|
docs/architecture/agents.md
CHANGED
|
@@ -4,16 +4,12 @@ DeepCritical uses Pydantic AI agents for all AI-powered operations. All agents f
|
|
| 4 |
|
| 5 |
## Agent Pattern
|
| 6 |
|
| 7 |
-
|
| 8 |
-
|
| 9 |
-
Pydantic AI agents use the `Agent` class with the following structure:
|
| 10 |
|
| 11 |
- **System Prompt**: Module-level constant with date injection
|
| 12 |
- **Agent Class**: `__init__(model: Any | None = None)`
|
| 13 |
- **Main Method**: Async method (e.g., `async def evaluate()`, `async def write_report()`)
|
| 14 |
-
- **Factory Function**: `def create_agent_name(model: Any | None = None
|
| 15 |
-
|
| 16 |
-
**Note**: Factory functions accept an optional `oauth_token` parameter for HuggingFace authentication, which takes priority over environment variables.
|
| 17 |
|
| 18 |
## Model Initialization
|
| 19 |
|
|
@@ -159,130 +155,19 @@ For text output (writer agents), agents return `str` directly.
|
|
| 159 |
- `key_entities`: List of key entities
|
| 160 |
- `research_questions`: List of research questions
|
| 161 |
|
| 162 |
-
## Magentic Agents
|
| 163 |
-
|
| 164 |
-
The following agents use the `BaseAgent` pattern from `agent-framework` and are used exclusively with `MagenticOrchestrator`:
|
| 165 |
-
|
| 166 |
-
### Hypothesis Agent
|
| 167 |
-
|
| 168 |
-
**File**: `src/agents/hypothesis_agent.py`
|
| 169 |
-
|
| 170 |
-
**Purpose**: Generates mechanistic hypotheses based on evidence.
|
| 171 |
-
|
| 172 |
-
**Pattern**: `BaseAgent` from `agent-framework`
|
| 173 |
-
|
| 174 |
-
**Methods**:
|
| 175 |
-
- `async def run(messages, thread, **kwargs) -> AgentRunResponse`
|
| 176 |
-
|
| 177 |
-
**Features**:
|
| 178 |
-
- Uses internal Pydantic AI `Agent` with `HypothesisAssessment` output type
|
| 179 |
-
- Accesses shared `evidence_store` for evidence
|
| 180 |
-
- Uses embedding service for diverse evidence selection (MMR algorithm)
|
| 181 |
-
- Stores hypotheses in shared context
|
| 182 |
-
|
| 183 |
-
### Search Agent
|
| 184 |
-
|
| 185 |
-
**File**: `src/agents/search_agent.py`
|
| 186 |
-
|
| 187 |
-
**Purpose**: Wraps `SearchHandler` as an agent for Magentic orchestrator.
|
| 188 |
-
|
| 189 |
-
**Pattern**: `BaseAgent` from `agent-framework`
|
| 190 |
-
|
| 191 |
-
**Methods**:
|
| 192 |
-
- `async def run(messages, thread, **kwargs) -> AgentRunResponse`
|
| 193 |
-
|
| 194 |
-
**Features**:
|
| 195 |
-
- Executes searches via `SearchHandlerProtocol`
|
| 196 |
-
- Deduplicates evidence using embedding service
|
| 197 |
-
- Searches for semantically related evidence
|
| 198 |
-
- Updates shared evidence store
|
| 199 |
-
|
| 200 |
-
### Analysis Agent
|
| 201 |
-
|
| 202 |
-
**File**: `src/agents/analysis_agent.py`
|
| 203 |
-
|
| 204 |
-
**Purpose**: Performs statistical analysis using Modal sandbox.
|
| 205 |
-
|
| 206 |
-
**Pattern**: `BaseAgent` from `agent-framework`
|
| 207 |
-
|
| 208 |
-
**Methods**:
|
| 209 |
-
- `async def run(messages, thread, **kwargs) -> AgentRunResponse`
|
| 210 |
-
|
| 211 |
-
**Features**:
|
| 212 |
-
- Wraps `StatisticalAnalyzer` service
|
| 213 |
-
- Analyzes evidence and hypotheses
|
| 214 |
-
- Returns verdict (SUPPORTED/REFUTED/INCONCLUSIVE)
|
| 215 |
-
- Stores analysis results in shared context
|
| 216 |
-
|
| 217 |
-
### Report Agent (Magentic)
|
| 218 |
-
|
| 219 |
-
**File**: `src/agents/report_agent.py`
|
| 220 |
-
|
| 221 |
-
**Purpose**: Generates structured scientific reports from evidence and hypotheses.
|
| 222 |
-
|
| 223 |
-
**Pattern**: `BaseAgent` from `agent-framework`
|
| 224 |
-
|
| 225 |
-
**Methods**:
|
| 226 |
-
- `async def run(messages, thread, **kwargs) -> AgentRunResponse`
|
| 227 |
-
|
| 228 |
-
**Features**:
|
| 229 |
-
- Uses internal Pydantic AI `Agent` with `ResearchReport` output type
|
| 230 |
-
- Accesses shared evidence store and hypotheses
|
| 231 |
-
- Validates citations before returning
|
| 232 |
-
- Formats report as markdown
|
| 233 |
-
|
| 234 |
-
### Judge Agent
|
| 235 |
-
|
| 236 |
-
**File**: `src/agents/judge_agent.py`
|
| 237 |
-
|
| 238 |
-
**Purpose**: Evaluates evidence quality and determines if sufficient for synthesis.
|
| 239 |
-
|
| 240 |
-
**Pattern**: `BaseAgent` from `agent-framework`
|
| 241 |
-
|
| 242 |
-
**Methods**:
|
| 243 |
-
- `async def run(messages, thread, **kwargs) -> AgentRunResponse`
|
| 244 |
-
- `async def run_stream(messages, thread, **kwargs) -> AsyncIterable[AgentRunResponseUpdate]`
|
| 245 |
-
|
| 246 |
-
**Features**:
|
| 247 |
-
- Wraps `JudgeHandlerProtocol`
|
| 248 |
-
- Accesses shared evidence store
|
| 249 |
-
- Returns `JudgeAssessment` with sufficient flag, confidence, and recommendation
|
| 250 |
-
|
| 251 |
-
## Agent Patterns
|
| 252 |
-
|
| 253 |
-
DeepCritical uses two distinct agent patterns:
|
| 254 |
-
|
| 255 |
-
### 1. Pydantic AI Agents (Traditional Pattern)
|
| 256 |
-
|
| 257 |
-
These agents use the Pydantic AI `Agent` class directly and are used in iterative and deep research flows:
|
| 258 |
-
|
| 259 |
-
- **Pattern**: `Agent(model, output_type, system_prompt)`
|
| 260 |
-
- **Initialization**: `__init__(model: Any | None = None)`
|
| 261 |
-
- **Methods**: Agent-specific async methods (e.g., `async def evaluate()`, `async def write_report()`)
|
| 262 |
-
- **Examples**: `KnowledgeGapAgent`, `ToolSelectorAgent`, `WriterAgent`, `LongWriterAgent`, `ProofreaderAgent`, `ThinkingAgent`, `InputParserAgent`
|
| 263 |
-
|
| 264 |
-
### 2. Magentic Agents (Agent-Framework Pattern)
|
| 265 |
-
|
| 266 |
-
These agents use the `BaseAgent` class from `agent-framework` and are used in Magentic orchestrator:
|
| 267 |
-
|
| 268 |
-
- **Pattern**: `BaseAgent` from `agent-framework` with `async def run()` method
|
| 269 |
-
- **Initialization**: `__init__(evidence_store, embedding_service, ...)`
|
| 270 |
-
- **Methods**: `async def run(messages, thread, **kwargs) -> AgentRunResponse`
|
| 271 |
-
- **Examples**: `HypothesisAgent`, `SearchAgent`, `AnalysisAgent`, `ReportAgent`, `JudgeAgent`
|
| 272 |
-
|
| 273 |
-
**Note**: Magentic agents are used exclusively with the `MagenticOrchestrator` and follow the agent-framework protocol for multi-agent coordination.
|
| 274 |
-
|
| 275 |
## Factory Functions
|
| 276 |
|
| 277 |
All agents have factory functions in `src/agent_factory/agents.py`:
|
| 278 |
|
| 279 |
-
|
| 280 |
-
|
| 281 |
-
|
|
|
|
|
|
|
|
|
|
| 282 |
|
| 283 |
Factory functions:
|
| 284 |
- Use `get_model()` if no model provided
|
| 285 |
-
- Accept `oauth_token` parameter for HuggingFace authentication
|
| 286 |
- Raise `ConfigurationError` if creation fails
|
| 287 |
- Log agent creation
|
| 288 |
|
|
@@ -291,3 +176,13 @@ Factory functions:
|
|
| 291 |
- [Orchestrators](orchestrators.md) - How agents are orchestrated
|
| 292 |
- [API Reference - Agents](../api/agents.md) - API documentation
|
| 293 |
- [Contributing - Code Style](../contributing/code-style.md) - Development guidelines
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 4 |
|
| 5 |
## Agent Pattern
|
| 6 |
|
| 7 |
+
All agents use the Pydantic AI `Agent` class with the following structure:
|
|
|
|
|
|
|
| 8 |
|
| 9 |
- **System Prompt**: Module-level constant with date injection
|
| 10 |
- **Agent Class**: `__init__(model: Any | None = None)`
|
| 11 |
- **Main Method**: Async method (e.g., `async def evaluate()`, `async def write_report()`)
|
| 12 |
+
- **Factory Function**: `def create_agent_name(model: Any | None = None) -> AgentName`
|
|
|
|
|
|
|
| 13 |
|
| 14 |
## Model Initialization
|
| 15 |
|
|
|
|
| 155 |
- `key_entities`: List of key entities
|
| 156 |
- `research_questions`: List of research questions
|
| 157 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 158 |
## Factory Functions
|
| 159 |
|
| 160 |
All agents have factory functions in `src/agent_factory/agents.py`:
|
| 161 |
|
| 162 |
+
```python
|
| 163 |
+
def create_knowledge_gap_agent(model: Any | None = None) -> KnowledgeGapAgent
|
| 164 |
+
def create_tool_selector_agent(model: Any | None = None) -> ToolSelectorAgent
|
| 165 |
+
def create_writer_agent(model: Any | None = None) -> WriterAgent
|
| 166 |
+
# ... etc
|
| 167 |
+
```
|
| 168 |
|
| 169 |
Factory functions:
|
| 170 |
- Use `get_model()` if no model provided
|
|
|
|
| 171 |
- Raise `ConfigurationError` if creation fails
|
| 172 |
- Log agent creation
|
| 173 |
|
|
|
|
| 176 |
- [Orchestrators](orchestrators.md) - How agents are orchestrated
|
| 177 |
- [API Reference - Agents](../api/agents.md) - API documentation
|
| 178 |
- [Contributing - Code Style](../contributing/code-style.md) - Development guidelines
|
| 179 |
+
|
| 180 |
+
|
| 181 |
+
|
| 182 |
+
|
| 183 |
+
|
| 184 |
+
|
| 185 |
+
|
| 186 |
+
|
| 187 |
+
|
| 188 |
+
|
docs/architecture/graph-orchestration.md
ADDED
|
@@ -0,0 +1,152 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Graph Orchestration Architecture
|
| 2 |
+
|
| 3 |
+
## Overview
|
| 4 |
+
|
| 5 |
+
Phase 4 implements a graph-based orchestration system for research workflows using Pydantic AI agents as nodes. This enables better parallel execution, conditional routing, and state management compared to simple agent chains.
|
| 6 |
+
|
| 7 |
+
## Graph Structure
|
| 8 |
+
|
| 9 |
+
### Nodes
|
| 10 |
+
|
| 11 |
+
Graph nodes represent different stages in the research workflow:
|
| 12 |
+
|
| 13 |
+
1. **Agent Nodes**: Execute Pydantic AI agents
|
| 14 |
+
- Input: Prompt/query
|
| 15 |
+
- Output: Structured or unstructured response
|
| 16 |
+
- Examples: `KnowledgeGapAgent`, `ToolSelectorAgent`, `ThinkingAgent`
|
| 17 |
+
|
| 18 |
+
2. **State Nodes**: Update or read workflow state
|
| 19 |
+
- Input: Current state
|
| 20 |
+
- Output: Updated state
|
| 21 |
+
- Examples: Update evidence, update conversation history
|
| 22 |
+
|
| 23 |
+
3. **Decision Nodes**: Make routing decisions based on conditions
|
| 24 |
+
- Input: Current state/results
|
| 25 |
+
- Output: Next node ID
|
| 26 |
+
- Examples: Continue research vs. complete research
|
| 27 |
+
|
| 28 |
+
4. **Parallel Nodes**: Execute multiple nodes concurrently
|
| 29 |
+
- Input: List of node IDs
|
| 30 |
+
- Output: Aggregated results
|
| 31 |
+
- Examples: Parallel iterative research loops
|
| 32 |
+
|
| 33 |
+
### Edges
|
| 34 |
+
|
| 35 |
+
Edges define transitions between nodes:
|
| 36 |
+
|
| 37 |
+
1. **Sequential Edges**: Always traversed (no condition)
|
| 38 |
+
- From: Source node
|
| 39 |
+
- To: Target node
|
| 40 |
+
- Condition: None (always True)
|
| 41 |
+
|
| 42 |
+
2. **Conditional Edges**: Traversed based on condition
|
| 43 |
+
- From: Source node
|
| 44 |
+
- To: Target node
|
| 45 |
+
- Condition: Callable that returns bool
|
| 46 |
+
- Example: If research complete → go to writer, else → continue loop
|
| 47 |
+
|
| 48 |
+
3. **Parallel Edges**: Used for parallel execution branches
|
| 49 |
+
- From: Parallel node
|
| 50 |
+
- To: Multiple target nodes
|
| 51 |
+
- Execution: All targets run concurrently
|
| 52 |
+
|
| 53 |
+
## Graph Patterns
|
| 54 |
+
|
| 55 |
+
### Iterative Research Graph
|
| 56 |
+
|
| 57 |
+
```
|
| 58 |
+
[Input] → [Thinking] → [Knowledge Gap] → [Decision: Complete?]
|
| 59 |
+
↓ No ↓ Yes
|
| 60 |
+
[Tool Selector] [Writer]
|
| 61 |
+
↓
|
| 62 |
+
[Execute Tools] → [Loop Back]
|
| 63 |
+
```
|
| 64 |
+
|
| 65 |
+
### Deep Research Graph
|
| 66 |
+
|
| 67 |
+
```
|
| 68 |
+
[Input] → [Planner] → [Parallel Iterative Loops] → [Synthesizer]
|
| 69 |
+
↓ ↓ ↓
|
| 70 |
+
[Loop1] [Loop2] [Loop3]
|
| 71 |
+
```
|
| 72 |
+
|
| 73 |
+
## State Management
|
| 74 |
+
|
| 75 |
+
State is managed via `WorkflowState` using `ContextVar` for thread-safe isolation:
|
| 76 |
+
|
| 77 |
+
- **Evidence**: Collected evidence from searches
|
| 78 |
+
- **Conversation**: Iteration history (gaps, tool calls, findings, thoughts)
|
| 79 |
+
- **Embedding Service**: For semantic search
|
| 80 |
+
|
| 81 |
+
State transitions occur at state nodes, which update the global workflow state.
|
| 82 |
+
|
| 83 |
+
## Execution Flow
|
| 84 |
+
|
| 85 |
+
1. **Graph Construction**: Build graph from nodes and edges
|
| 86 |
+
2. **Graph Validation**: Ensure graph is valid (no cycles, all nodes reachable)
|
| 87 |
+
3. **Graph Execution**: Traverse graph from entry node
|
| 88 |
+
4. **Node Execution**: Execute each node based on type
|
| 89 |
+
5. **Edge Evaluation**: Determine next node(s) based on edges
|
| 90 |
+
6. **Parallel Execution**: Use `asyncio.gather()` for parallel nodes
|
| 91 |
+
7. **State Updates**: Update state at state nodes
|
| 92 |
+
8. **Event Streaming**: Yield events during execution for UI
|
| 93 |
+
|
| 94 |
+
## Conditional Routing
|
| 95 |
+
|
| 96 |
+
Decision nodes evaluate conditions and return next node IDs:
|
| 97 |
+
|
| 98 |
+
- **Knowledge Gap Decision**: If `research_complete` → writer, else → tool selector
|
| 99 |
+
- **Budget Decision**: If budget exceeded → exit, else → continue
|
| 100 |
+
- **Iteration Decision**: If max iterations → exit, else → continue
|
| 101 |
+
|
| 102 |
+
## Parallel Execution
|
| 103 |
+
|
| 104 |
+
Parallel nodes execute multiple nodes concurrently:
|
| 105 |
+
|
| 106 |
+
- Each parallel branch runs independently
|
| 107 |
+
- Results are aggregated after all branches complete
|
| 108 |
+
- State is synchronized after parallel execution
|
| 109 |
+
- Errors in one branch don't stop other branches
|
| 110 |
+
|
| 111 |
+
## Budget Enforcement
|
| 112 |
+
|
| 113 |
+
Budget constraints are enforced at decision nodes:
|
| 114 |
+
|
| 115 |
+
- **Token Budget**: Track LLM token usage
|
| 116 |
+
- **Time Budget**: Track elapsed time
|
| 117 |
+
- **Iteration Budget**: Track iteration count
|
| 118 |
+
|
| 119 |
+
If any budget is exceeded, execution routes to exit node.
|
| 120 |
+
|
| 121 |
+
## Error Handling
|
| 122 |
+
|
| 123 |
+
Errors are handled at multiple levels:
|
| 124 |
+
|
| 125 |
+
1. **Node Level**: Catch errors in individual node execution
|
| 126 |
+
2. **Graph Level**: Handle errors during graph traversal
|
| 127 |
+
3. **State Level**: Rollback state changes on error
|
| 128 |
+
|
| 129 |
+
Errors are logged and yield error events for UI.
|
| 130 |
+
|
| 131 |
+
## Backward Compatibility
|
| 132 |
+
|
| 133 |
+
Graph execution is optional via feature flag:
|
| 134 |
+
|
| 135 |
+
- `USE_GRAPH_EXECUTION=true`: Use graph-based execution
|
| 136 |
+
- `USE_GRAPH_EXECUTION=false`: Use agent chain execution (existing)
|
| 137 |
+
|
| 138 |
+
This allows gradual migration and fallback if needed.
|
| 139 |
+
|
| 140 |
+
|
| 141 |
+
|
| 142 |
+
|
| 143 |
+
|
| 144 |
+
|
| 145 |
+
|
| 146 |
+
|
| 147 |
+
|
| 148 |
+
|
| 149 |
+
|
| 150 |
+
|
| 151 |
+
|
| 152 |
+
|
docs/architecture/graph_orchestration.md
CHANGED
|
@@ -2,163 +2,7 @@
|
|
| 2 |
|
| 3 |
## Overview
|
| 4 |
|
| 5 |
-
|
| 6 |
-
|
| 7 |
-
## Conversation History
|
| 8 |
-
|
| 9 |
-
DeepCritical supports multi-turn conversations through Pydantic AI's native message history format. The system maintains two types of history:
|
| 10 |
-
|
| 11 |
-
1. **User Conversation History**: Multi-turn user interactions (from Gradio chat interface) stored as `list[ModelMessage]`
|
| 12 |
-
2. **Research Iteration History**: Internal research process state (existing `Conversation` model)
|
| 13 |
-
|
| 14 |
-
### Message History Flow
|
| 15 |
-
|
| 16 |
-
```
|
| 17 |
-
Gradio Chat History → convert_gradio_to_message_history() → GraphOrchestrator.run(message_history)
|
| 18 |
-
↓
|
| 19 |
-
GraphExecutionContext (stores message_history)
|
| 20 |
-
↓
|
| 21 |
-
Agent Nodes (receive message_history via agent.run())
|
| 22 |
-
↓
|
| 23 |
-
WorkflowState (persists user_message_history)
|
| 24 |
-
```
|
| 25 |
-
|
| 26 |
-
### Usage
|
| 27 |
-
|
| 28 |
-
Message history is automatically converted from Gradio format and passed through the orchestrator:
|
| 29 |
-
|
| 30 |
-
```python
|
| 31 |
-
# In app.py - automatic conversion
|
| 32 |
-
message_history = convert_gradio_to_message_history(history) if history else None
|
| 33 |
-
async for event in orchestrator.run(query, message_history=message_history):
|
| 34 |
-
yield event
|
| 35 |
-
```
|
| 36 |
-
|
| 37 |
-
Agents receive message history through their `run()` methods:
|
| 38 |
-
|
| 39 |
-
```python
|
| 40 |
-
# In agent execution
|
| 41 |
-
if message_history:
|
| 42 |
-
result = await agent.run(input_data, message_history=message_history)
|
| 43 |
-
```
|
| 44 |
-
|
| 45 |
-
## Graph Patterns
|
| 46 |
-
|
| 47 |
-
### Iterative Research Graph
|
| 48 |
-
|
| 49 |
-
The iterative research graph follows this pattern:
|
| 50 |
-
|
| 51 |
-
```
|
| 52 |
-
[Input] → [Thinking] → [Knowledge Gap] → [Decision: Complete?]
|
| 53 |
-
↓ No ↓ Yes
|
| 54 |
-
[Tool Selector] [Writer]
|
| 55 |
-
↓
|
| 56 |
-
[Execute Tools] → [Loop Back]
|
| 57 |
-
```
|
| 58 |
-
|
| 59 |
-
**Node IDs**: `thinking` → `knowledge_gap` → `continue_decision` → `tool_selector`/`writer` → `execute_tools` → (loop back to `thinking`)
|
| 60 |
-
|
| 61 |
-
**Special Node Handling**:
|
| 62 |
-
- `execute_tools`: State node that uses `search_handler` to execute searches and add evidence to workflow state
|
| 63 |
-
- `continue_decision`: Decision node that routes based on `research_complete` flag from `KnowledgeGapOutput`
|
| 64 |
-
|
| 65 |
-
### Deep Research Graph
|
| 66 |
-
|
| 67 |
-
The deep research graph follows this pattern:
|
| 68 |
-
|
| 69 |
-
```
|
| 70 |
-
[Input] → [Planner] → [Store Plan] → [Parallel Loops] → [Collect Drafts] → [Synthesizer]
|
| 71 |
-
↓ ↓ ↓
|
| 72 |
-
[Loop1] [Loop2] [Loop3]
|
| 73 |
-
```
|
| 74 |
-
|
| 75 |
-
**Node IDs**: `planner` → `store_plan` → `parallel_loops` → `collect_drafts` → `synthesizer`
|
| 76 |
-
|
| 77 |
-
**Special Node Handling**:
|
| 78 |
-
- `planner`: Agent node that creates `ReportPlan` with report outline
|
| 79 |
-
- `store_plan`: State node that stores `ReportPlan` in context for parallel loops
|
| 80 |
-
- `parallel_loops`: Parallel node that executes `IterativeResearchFlow` instances for each section
|
| 81 |
-
- `collect_drafts`: State node that collects section drafts from parallel loops
|
| 82 |
-
- `synthesizer`: Agent node that calls `LongWriterAgent.write_report()` directly with `ReportDraft`
|
| 83 |
-
|
| 84 |
-
### Deep Research
|
| 85 |
-
|
| 86 |
-
```mermaid
|
| 87 |
-
|
| 88 |
-
sequenceDiagram
|
| 89 |
-
actor User
|
| 90 |
-
participant GraphOrchestrator
|
| 91 |
-
participant InputParser
|
| 92 |
-
participant GraphBuilder
|
| 93 |
-
participant GraphExecutor
|
| 94 |
-
participant Agent
|
| 95 |
-
participant BudgetTracker
|
| 96 |
-
participant WorkflowState
|
| 97 |
-
|
| 98 |
-
User->>GraphOrchestrator: run(query)
|
| 99 |
-
GraphOrchestrator->>InputParser: detect_research_mode(query)
|
| 100 |
-
InputParser-->>GraphOrchestrator: mode (iterative/deep)
|
| 101 |
-
GraphOrchestrator->>GraphBuilder: build_graph(mode)
|
| 102 |
-
GraphBuilder-->>GraphOrchestrator: ResearchGraph
|
| 103 |
-
GraphOrchestrator->>WorkflowState: init_workflow_state()
|
| 104 |
-
GraphOrchestrator->>BudgetTracker: create_budget()
|
| 105 |
-
GraphOrchestrator->>GraphExecutor: _execute_graph(graph)
|
| 106 |
-
|
| 107 |
-
loop For each node in graph
|
| 108 |
-
GraphExecutor->>Agent: execute_node(agent_node)
|
| 109 |
-
Agent->>Agent: process_input
|
| 110 |
-
Agent-->>GraphExecutor: result
|
| 111 |
-
GraphExecutor->>WorkflowState: update_state(result)
|
| 112 |
-
GraphExecutor->>BudgetTracker: add_tokens(used)
|
| 113 |
-
GraphExecutor->>BudgetTracker: check_budget()
|
| 114 |
-
alt Budget exceeded
|
| 115 |
-
GraphExecutor->>GraphOrchestrator: emit(error_event)
|
| 116 |
-
else Continue
|
| 117 |
-
GraphExecutor->>GraphOrchestrator: emit(progress_event)
|
| 118 |
-
end
|
| 119 |
-
end
|
| 120 |
-
|
| 121 |
-
GraphOrchestrator->>User: AsyncGenerator[AgentEvent]
|
| 122 |
-
|
| 123 |
-
```
|
| 124 |
-
|
| 125 |
-
### Iterative Research
|
| 126 |
-
|
| 127 |
-
```mermaid
|
| 128 |
-
sequenceDiagram
|
| 129 |
-
participant IterativeFlow
|
| 130 |
-
participant ThinkingAgent
|
| 131 |
-
participant KnowledgeGapAgent
|
| 132 |
-
participant ToolSelector
|
| 133 |
-
participant ToolExecutor
|
| 134 |
-
participant JudgeHandler
|
| 135 |
-
participant WriterAgent
|
| 136 |
-
|
| 137 |
-
IterativeFlow->>IterativeFlow: run(query)
|
| 138 |
-
|
| 139 |
-
loop Until complete or max_iterations
|
| 140 |
-
IterativeFlow->>ThinkingAgent: generate_observations()
|
| 141 |
-
ThinkingAgent-->>IterativeFlow: observations
|
| 142 |
-
|
| 143 |
-
IterativeFlow->>KnowledgeGapAgent: evaluate_gaps()
|
| 144 |
-
KnowledgeGapAgent-->>IterativeFlow: KnowledgeGapOutput
|
| 145 |
-
|
| 146 |
-
alt Research complete
|
| 147 |
-
IterativeFlow->>WriterAgent: create_final_report()
|
| 148 |
-
WriterAgent-->>IterativeFlow: final_report
|
| 149 |
-
else Gaps remain
|
| 150 |
-
IterativeFlow->>ToolSelector: select_agents(gap)
|
| 151 |
-
ToolSelector-->>IterativeFlow: AgentSelectionPlan
|
| 152 |
-
|
| 153 |
-
IterativeFlow->>ToolExecutor: execute_tool_tasks()
|
| 154 |
-
ToolExecutor-->>IterativeFlow: ToolAgentOutput[]
|
| 155 |
-
|
| 156 |
-
IterativeFlow->>JudgeHandler: assess_evidence()
|
| 157 |
-
JudgeHandler-->>IterativeFlow: should_continue
|
| 158 |
-
end
|
| 159 |
-
end
|
| 160 |
-
```
|
| 161 |
-
|
| 162 |
|
| 163 |
## Graph Structure
|
| 164 |
|
|
@@ -206,6 +50,25 @@ Edges define transitions between nodes:
|
|
| 206 |
- To: Multiple target nodes
|
| 207 |
- Execution: All targets run concurrently
|
| 208 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 209 |
|
| 210 |
## State Management
|
| 211 |
|
|
@@ -219,35 +82,14 @@ State transitions occur at state nodes, which update the global workflow state.
|
|
| 219 |
|
| 220 |
## Execution Flow
|
| 221 |
|
| 222 |
-
1. **Graph Construction**: Build graph from nodes and edges
|
| 223 |
-
2. **Graph Validation**: Ensure graph is valid (no cycles, all nodes reachable)
|
| 224 |
-
3. **Graph Execution**: Traverse graph from entry node
|
| 225 |
-
4. **Node Execution**: Execute each node based on type
|
| 226 |
-
|
| 227 |
-
- **State Nodes**: Update workflow state via `state_updater` function
|
| 228 |
-
- **Decision Nodes**: Evaluate `decision_function` to get next node ID
|
| 229 |
-
- **Parallel Nodes**: Execute all parallel nodes concurrently via `asyncio.gather()`
|
| 230 |
-
5. **Edge Evaluation**: Determine next node(s) based on edges and conditions
|
| 231 |
6. **Parallel Execution**: Use `asyncio.gather()` for parallel nodes
|
| 232 |
-
7. **State Updates**: Update state at state nodes
|
| 233 |
-
8. **Event Streaming**: Yield
|
| 234 |
-
|
| 235 |
-
### GraphExecutionContext
|
| 236 |
-
|
| 237 |
-
The `GraphExecutionContext` class manages execution state during graph traversal:
|
| 238 |
-
|
| 239 |
-
- **State**: Current `WorkflowState` instance
|
| 240 |
-
- **Budget Tracker**: `BudgetTracker` instance for budget enforcement
|
| 241 |
-
- **Node Results**: Dictionary storing results from each node execution
|
| 242 |
-
- **Visited Nodes**: Set of node IDs that have been executed
|
| 243 |
-
- **Current Node**: ID of the node currently being executed
|
| 244 |
-
|
| 245 |
-
Methods:
|
| 246 |
-
- `set_node_result(node_id, result)`: Store result from node execution
|
| 247 |
-
- `get_node_result(node_id)`: Retrieve stored result
|
| 248 |
-
- `has_visited(node_id)`: Check if node was visited
|
| 249 |
-
- `mark_visited(node_id)`: Mark node as visited
|
| 250 |
-
- `update_state(updater, data)`: Update workflow state
|
| 251 |
|
| 252 |
## Conditional Routing
|
| 253 |
|
|
@@ -298,5 +140,20 @@ This allows gradual migration and fallback if needed.
|
|
| 298 |
## See Also
|
| 299 |
|
| 300 |
- [Orchestrators](orchestrators.md) - Overview of all orchestrator patterns
|
|
|
|
| 301 |
- [Workflow Diagrams](workflow-diagrams.md) - Detailed workflow diagrams
|
| 302 |
- [API Reference - Orchestrators](../api/orchestrators.md) - API documentation
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 2 |
|
| 3 |
## Overview
|
| 4 |
|
| 5 |
+
Phase 4 implements a graph-based orchestration system for research workflows using Pydantic AI agents as nodes. This enables better parallel execution, conditional routing, and state management compared to simple agent chains.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 6 |
|
| 7 |
## Graph Structure
|
| 8 |
|
|
|
|
| 50 |
- To: Multiple target nodes
|
| 51 |
- Execution: All targets run concurrently
|
| 52 |
|
| 53 |
+
## Graph Patterns
|
| 54 |
+
|
| 55 |
+
### Iterative Research Graph
|
| 56 |
+
|
| 57 |
+
```
|
| 58 |
+
[Input] → [Thinking] → [Knowledge Gap] → [Decision: Complete?]
|
| 59 |
+
↓ No ↓ Yes
|
| 60 |
+
[Tool Selector] [Writer]
|
| 61 |
+
↓
|
| 62 |
+
[Execute Tools] → [Loop Back]
|
| 63 |
+
```
|
| 64 |
+
|
| 65 |
+
### Deep Research Graph
|
| 66 |
+
|
| 67 |
+
```
|
| 68 |
+
[Input] → [Planner] → [Parallel Iterative Loops] → [Synthesizer]
|
| 69 |
+
↓ ↓ ↓
|
| 70 |
+
[Loop1] [Loop2] [Loop3]
|
| 71 |
+
```
|
| 72 |
|
| 73 |
## State Management
|
| 74 |
|
|
|
|
| 82 |
|
| 83 |
## Execution Flow
|
| 84 |
|
| 85 |
+
1. **Graph Construction**: Build graph from nodes and edges
|
| 86 |
+
2. **Graph Validation**: Ensure graph is valid (no cycles, all nodes reachable)
|
| 87 |
+
3. **Graph Execution**: Traverse graph from entry node
|
| 88 |
+
4. **Node Execution**: Execute each node based on type
|
| 89 |
+
5. **Edge Evaluation**: Determine next node(s) based on edges
|
|
|
|
|
|
|
|
|
|
|
|
|
| 90 |
6. **Parallel Execution**: Use `asyncio.gather()` for parallel nodes
|
| 91 |
+
7. **State Updates**: Update state at state nodes
|
| 92 |
+
8. **Event Streaming**: Yield events during execution for UI
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 93 |
|
| 94 |
## Conditional Routing
|
| 95 |
|
|
|
|
| 140 |
## See Also
|
| 141 |
|
| 142 |
- [Orchestrators](orchestrators.md) - Overview of all orchestrator patterns
|
| 143 |
+
- [Workflows](workflows.md) - Workflow diagrams and patterns
|
| 144 |
- [Workflow Diagrams](workflow-diagrams.md) - Detailed workflow diagrams
|
| 145 |
- [API Reference - Orchestrators](../api/orchestrators.md) - API documentation
|
| 146 |
+
|
| 147 |
+
|
| 148 |
+
|
| 149 |
+
|
| 150 |
+
|
| 151 |
+
|
| 152 |
+
|
| 153 |
+
|
| 154 |
+
|
| 155 |
+
|
| 156 |
+
|
| 157 |
+
|
| 158 |
+
|
| 159 |
+
|
docs/architecture/middleware.md
CHANGED
|
@@ -18,20 +18,22 @@ DeepCritical uses middleware for state management, budget tracking, and workflow
|
|
| 18 |
- `embedding_service: Any`: Embedding service for semantic search
|
| 19 |
|
| 20 |
**Methods**:
|
| 21 |
-
- `add_evidence(
|
| 22 |
-
- `async search_related(query: str,
|
| 23 |
|
| 24 |
**Initialization**:
|
|
|
|
|
|
|
| 25 |
|
| 26 |
-
|
| 27 |
-
|
| 28 |
-
<!--/codeinclude-->
|
| 29 |
|
| 30 |
**Access**:
|
|
|
|
|
|
|
| 31 |
|
| 32 |
-
|
| 33 |
-
|
| 34 |
-
<!--/codeinclude-->
|
| 35 |
|
| 36 |
## Workflow Manager
|
| 37 |
|
|
@@ -40,10 +42,10 @@ DeepCritical uses middleware for state management, budget tracking, and workflow
|
|
| 40 |
**Purpose**: Coordinates parallel research loops
|
| 41 |
|
| 42 |
**Methods**:
|
| 43 |
-
- `
|
| 44 |
-
- `async run_loops_parallel(
|
| 45 |
-
- `
|
| 46 |
-
- `
|
| 47 |
|
| 48 |
**Features**:
|
| 49 |
- Uses `asyncio.gather()` for parallel execution
|
|
@@ -56,22 +58,9 @@ DeepCritical uses middleware for state management, budget tracking, and workflow
|
|
| 56 |
from src.middleware.workflow_manager import WorkflowManager
|
| 57 |
|
| 58 |
manager = WorkflowManager()
|
| 59 |
-
|
| 60 |
-
|
| 61 |
-
|
| 62 |
-
async def run_research(config: dict) -> str:
|
| 63 |
-
loop_id = config["loop_id"]
|
| 64 |
-
query = config["query"]
|
| 65 |
-
# ... research logic ...
|
| 66 |
-
return "report"
|
| 67 |
-
|
| 68 |
-
results = await manager.run_loops_parallel(
|
| 69 |
-
loop_configs=[
|
| 70 |
-
{"loop_id": "loop1", "query": "Research query 1"},
|
| 71 |
-
{"loop_id": "loop2", "query": "Research query 2"},
|
| 72 |
-
],
|
| 73 |
-
loop_func=run_research,
|
| 74 |
-
)
|
| 75 |
```
|
| 76 |
|
| 77 |
## Budget Tracker
|
|
@@ -86,13 +75,13 @@ results = await manager.run_loops_parallel(
|
|
| 86 |
- **Iterations**: Number of iterations
|
| 87 |
|
| 88 |
**Methods**:
|
| 89 |
-
- `create_budget(
|
| 90 |
-
- `add_tokens(
|
| 91 |
-
- `start_timer(
|
| 92 |
-
- `update_timer(
|
| 93 |
-
- `increment_iteration(
|
| 94 |
-
- `check_budget(
|
| 95 |
-
- `can_continue(
|
| 96 |
|
| 97 |
**Token Estimation**:
|
| 98 |
- `estimate_tokens(text: str) -> int`: ~4 chars per token
|
|
@@ -104,20 +93,13 @@ from src.middleware.budget_tracker import BudgetTracker
|
|
| 104 |
|
| 105 |
tracker = BudgetTracker()
|
| 106 |
budget = tracker.create_budget(
|
| 107 |
-
|
| 108 |
-
tokens_limit=100000,
|
| 109 |
time_limit_seconds=600,
|
| 110 |
iterations_limit=10
|
| 111 |
)
|
| 112 |
-
tracker.start_timer(
|
| 113 |
# ... research operations ...
|
| 114 |
-
tracker.
|
| 115 |
-
tracker.update_timer("research_loop")
|
| 116 |
-
exceeded, reason = tracker.check_budget("research_loop")
|
| 117 |
-
if exceeded:
|
| 118 |
-
# Budget exceeded, stop research
|
| 119 |
-
pass
|
| 120 |
-
if not tracker.can_continue("research_loop"):
|
| 121 |
# Budget exceeded, stop research
|
| 122 |
pass
|
| 123 |
```
|
|
@@ -144,3 +126,13 @@ All middleware components use `ContextVar` for thread-safe isolation:
|
|
| 144 |
- [Orchestrators](orchestrators.md) - How middleware is used in orchestration
|
| 145 |
- [API Reference - Orchestrators](../api/orchestrators.md) - API documentation
|
| 146 |
- [Contributing - Code Style](../contributing/code-style.md) - Development guidelines
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 18 |
- `embedding_service: Any`: Embedding service for semantic search
|
| 19 |
|
| 20 |
**Methods**:
|
| 21 |
+
- `add_evidence(evidence: Evidence)`: Adds evidence with URL-based deduplication
|
| 22 |
+
- `async search_related(query: str, top_k: int = 5) -> list[Evidence]`: Semantic search
|
| 23 |
|
| 24 |
**Initialization**:
|
| 25 |
+
```python
|
| 26 |
+
from src.middleware.state_machine import init_workflow_state
|
| 27 |
|
| 28 |
+
init_workflow_state(embedding_service)
|
| 29 |
+
```
|
|
|
|
| 30 |
|
| 31 |
**Access**:
|
| 32 |
+
```python
|
| 33 |
+
from src.middleware.state_machine import get_workflow_state
|
| 34 |
|
| 35 |
+
state = get_workflow_state() # Auto-initializes if missing
|
| 36 |
+
```
|
|
|
|
| 37 |
|
| 38 |
## Workflow Manager
|
| 39 |
|
|
|
|
| 42 |
**Purpose**: Coordinates parallel research loops
|
| 43 |
|
| 44 |
**Methods**:
|
| 45 |
+
- `add_loop(loop: ResearchLoop)`: Add a research loop to manage
|
| 46 |
+
- `async run_loops_parallel() -> list[ResearchLoop]`: Run all loops in parallel
|
| 47 |
+
- `update_loop_status(loop_id: str, status: str)`: Update loop status
|
| 48 |
+
- `sync_loop_evidence_to_state()`: Synchronize evidence from loops to global state
|
| 49 |
|
| 50 |
**Features**:
|
| 51 |
- Uses `asyncio.gather()` for parallel execution
|
|
|
|
| 58 |
from src.middleware.workflow_manager import WorkflowManager
|
| 59 |
|
| 60 |
manager = WorkflowManager()
|
| 61 |
+
manager.add_loop(loop1)
|
| 62 |
+
manager.add_loop(loop2)
|
| 63 |
+
completed_loops = await manager.run_loops_parallel()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 64 |
```
|
| 65 |
|
| 66 |
## Budget Tracker
|
|
|
|
| 75 |
- **Iterations**: Number of iterations
|
| 76 |
|
| 77 |
**Methods**:
|
| 78 |
+
- `create_budget(token_limit, time_limit_seconds, iterations_limit) -> BudgetStatus`
|
| 79 |
+
- `add_tokens(tokens: int)`: Add token usage
|
| 80 |
+
- `start_timer()`: Start time tracking
|
| 81 |
+
- `update_timer()`: Update elapsed time
|
| 82 |
+
- `increment_iteration()`: Increment iteration count
|
| 83 |
+
- `check_budget() -> BudgetStatus`: Check current budget status
|
| 84 |
+
- `can_continue() -> bool`: Check if research can continue
|
| 85 |
|
| 86 |
**Token Estimation**:
|
| 87 |
- `estimate_tokens(text: str) -> int`: ~4 chars per token
|
|
|
|
| 93 |
|
| 94 |
tracker = BudgetTracker()
|
| 95 |
budget = tracker.create_budget(
|
| 96 |
+
token_limit=100000,
|
|
|
|
| 97 |
time_limit_seconds=600,
|
| 98 |
iterations_limit=10
|
| 99 |
)
|
| 100 |
+
tracker.start_timer()
|
| 101 |
# ... research operations ...
|
| 102 |
+
if not tracker.can_continue():
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 103 |
# Budget exceeded, stop research
|
| 104 |
pass
|
| 105 |
```
|
|
|
|
| 126 |
- [Orchestrators](orchestrators.md) - How middleware is used in orchestration
|
| 127 |
- [API Reference - Orchestrators](../api/orchestrators.md) - API documentation
|
| 128 |
- [Contributing - Code Style](../contributing/code-style.md) - Development guidelines
|
| 129 |
+
|
| 130 |
+
|
| 131 |
+
|
| 132 |
+
|
| 133 |
+
|
| 134 |
+
|
| 135 |
+
|
| 136 |
+
|
| 137 |
+
|
| 138 |
+
|
docs/architecture/orchestrators.md
CHANGED
|
@@ -23,10 +23,19 @@ DeepCritical supports multiple orchestration patterns for research workflows.
|
|
| 23 |
- Iterates until research complete or constraints met
|
| 24 |
|
| 25 |
**Usage**:
|
|
|
|
|
|
|
| 26 |
|
| 27 |
-
|
| 28 |
-
|
| 29 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 30 |
|
| 31 |
### DeepResearchFlow
|
| 32 |
|
|
@@ -46,10 +55,19 @@ DeepCritical supports multiple orchestration patterns for research workflows.
|
|
| 46 |
- Supports graph execution and agent chains
|
| 47 |
|
| 48 |
**Usage**:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 49 |
|
| 50 |
-
|
| 51 |
-
|
| 52 |
-
|
|
|
|
| 53 |
|
| 54 |
## Graph Orchestrator
|
| 55 |
|
|
@@ -58,10 +76,9 @@ DeepCritical supports multiple orchestration patterns for research workflows.
|
|
| 58 |
**Purpose**: Graph-based execution using Pydantic AI agents as nodes
|
| 59 |
|
| 60 |
**Features**:
|
| 61 |
-
- Uses
|
| 62 |
- Routes based on research mode (iterative/deep/auto)
|
| 63 |
- Streams `AgentEvent` objects for UI
|
| 64 |
-
- Uses `GraphExecutionContext` to manage execution state
|
| 65 |
|
| 66 |
**Node Types**:
|
| 67 |
- **Agent Nodes**: Execute Pydantic AI agents
|
|
@@ -74,22 +91,6 @@ DeepCritical supports multiple orchestration patterns for research workflows.
|
|
| 74 |
- **Conditional Edges**: Traversed based on condition
|
| 75 |
- **Parallel Edges**: Used for parallel execution branches
|
| 76 |
|
| 77 |
-
**Special Node Handling**:
|
| 78 |
-
|
| 79 |
-
The `GraphOrchestrator` has special handling for certain nodes:
|
| 80 |
-
|
| 81 |
-
- **`execute_tools` node**: State node that uses `search_handler` to execute searches and add evidence to workflow state
|
| 82 |
-
- **`parallel_loops` node**: Parallel node that executes `IterativeResearchFlow` instances for each section in deep research mode
|
| 83 |
-
- **`synthesizer` node**: Agent node that calls `LongWriterAgent.write_report()` directly with `ReportDraft` instead of using `agent.run()`
|
| 84 |
-
- **`writer` node**: Agent node that calls `WriterAgent.write_report()` directly with findings instead of using `agent.run()`
|
| 85 |
-
|
| 86 |
-
**GraphExecutionContext**:
|
| 87 |
-
|
| 88 |
-
The orchestrator uses `GraphExecutionContext` to manage execution state:
|
| 89 |
-
- Tracks current node, visited nodes, and node results
|
| 90 |
-
- Manages workflow state and budget tracker
|
| 91 |
-
- Provides methods to store and retrieve node execution results
|
| 92 |
-
|
| 93 |
## Orchestrator Factory
|
| 94 |
|
| 95 |
**File**: `src/orchestrator_factory.py`
|
|
@@ -102,10 +103,16 @@ The orchestrator uses `GraphExecutionContext` to manage execution state:
|
|
| 102 |
- **Auto-detect**: Chooses based on API key availability
|
| 103 |
|
| 104 |
**Usage**:
|
|
|
|
|
|
|
| 105 |
|
| 106 |
-
|
| 107 |
-
|
| 108 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 109 |
|
| 110 |
## Magentic Orchestrator
|
| 111 |
|
|
@@ -116,26 +123,14 @@ The orchestrator uses `GraphExecutionContext` to manage execution state:
|
|
| 116 |
**Features**:
|
| 117 |
- Uses `agent-framework-core`
|
| 118 |
- ChatAgent pattern with internal LLMs per agent
|
| 119 |
-
- `MagenticBuilder` with participants:
|
| 120 |
-
|
| 121 |
-
|
| 122 |
-
|
| 123 |
-
- `reporter`: ReportAgent (generates final report)
|
| 124 |
-
- Manager orchestrates agents via chat client (OpenAI or HuggingFace)
|
| 125 |
-
- Event-driven: converts Magentic events to `AgentEvent` for UI streaming via `_process_event()` method
|
| 126 |
-
- Supports max rounds, stall detection, and reset handling
|
| 127 |
-
|
| 128 |
-
**Event Processing**:
|
| 129 |
-
|
| 130 |
-
The orchestrator processes Magentic events and converts them to `AgentEvent`:
|
| 131 |
-
- `MagenticOrchestratorMessageEvent` → `AgentEvent` with type based on message content
|
| 132 |
-
- `MagenticAgentMessageEvent` → `AgentEvent` with type based on agent name
|
| 133 |
-
- `MagenticAgentDeltaEvent` → `AgentEvent` for streaming updates
|
| 134 |
-
- `MagenticFinalResultEvent` → `AgentEvent` with type "complete"
|
| 135 |
|
| 136 |
**Requirements**:
|
| 137 |
- `agent-framework-core` package
|
| 138 |
-
- OpenAI API key
|
| 139 |
|
| 140 |
## Hierarchical Orchestrator
|
| 141 |
|
|
@@ -164,9 +159,13 @@ The orchestrator processes Magentic events and converts them to `AgentEvent`:
|
|
| 164 |
|
| 165 |
All orchestrators must initialize workflow state:
|
| 166 |
|
| 167 |
-
|
| 168 |
-
|
| 169 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 170 |
|
| 171 |
## Event Streaming
|
| 172 |
|
|
@@ -174,28 +173,26 @@ All orchestrators yield `AgentEvent` objects:
|
|
| 174 |
|
| 175 |
**Event Types**:
|
| 176 |
- `started`: Research started
|
| 177 |
-
- `searching`: Search in progress
|
| 178 |
- `search_complete`: Search completed
|
| 179 |
-
- `judging`: Evidence evaluation in progress
|
| 180 |
- `judge_complete`: Evidence evaluation completed
|
| 181 |
-
- `looping`: Iteration in progress
|
| 182 |
- `hypothesizing`: Generating hypotheses
|
| 183 |
-
- `analyzing`: Statistical analysis in progress
|
| 184 |
-
- `analysis_complete`: Statistical analysis completed
|
| 185 |
- `synthesizing`: Synthesizing results
|
| 186 |
- `complete`: Research completed
|
| 187 |
- `error`: Error occurred
|
| 188 |
-
- `streaming`: Streaming update (delta events)
|
| 189 |
|
| 190 |
**Event Structure**:
|
| 191 |
-
|
| 192 |
-
|
| 193 |
-
|
| 194 |
-
|
|
|
|
|
|
|
| 195 |
|
| 196 |
## See Also
|
| 197 |
|
| 198 |
-
- [Graph Orchestration](
|
|
|
|
|
|
|
| 199 |
- [Workflow Diagrams](workflow-diagrams.md) - Detailed workflow diagrams
|
| 200 |
- [API Reference - Orchestrators](../api/orchestrators.md) - API documentation
|
| 201 |
|
|
|
|
| 23 |
- Iterates until research complete or constraints met
|
| 24 |
|
| 25 |
**Usage**:
|
| 26 |
+
```python
|
| 27 |
+
from src.orchestrator.research_flow import IterativeResearchFlow
|
| 28 |
|
| 29 |
+
flow = IterativeResearchFlow(
|
| 30 |
+
search_handler=search_handler,
|
| 31 |
+
judge_handler=judge_handler,
|
| 32 |
+
use_graph=False
|
| 33 |
+
)
|
| 34 |
+
|
| 35 |
+
async for event in flow.run(query):
|
| 36 |
+
# Handle events
|
| 37 |
+
pass
|
| 38 |
+
```
|
| 39 |
|
| 40 |
### DeepResearchFlow
|
| 41 |
|
|
|
|
| 55 |
- Supports graph execution and agent chains
|
| 56 |
|
| 57 |
**Usage**:
|
| 58 |
+
```python
|
| 59 |
+
from src.orchestrator.research_flow import DeepResearchFlow
|
| 60 |
+
|
| 61 |
+
flow = DeepResearchFlow(
|
| 62 |
+
search_handler=search_handler,
|
| 63 |
+
judge_handler=judge_handler,
|
| 64 |
+
use_graph=True
|
| 65 |
+
)
|
| 66 |
|
| 67 |
+
async for event in flow.run(query):
|
| 68 |
+
# Handle events
|
| 69 |
+
pass
|
| 70 |
+
```
|
| 71 |
|
| 72 |
## Graph Orchestrator
|
| 73 |
|
|
|
|
| 76 |
**Purpose**: Graph-based execution using Pydantic AI agents as nodes
|
| 77 |
|
| 78 |
**Features**:
|
| 79 |
+
- Uses Pydantic AI Graphs (when available) or agent chains (fallback)
|
| 80 |
- Routes based on research mode (iterative/deep/auto)
|
| 81 |
- Streams `AgentEvent` objects for UI
|
|
|
|
| 82 |
|
| 83 |
**Node Types**:
|
| 84 |
- **Agent Nodes**: Execute Pydantic AI agents
|
|
|
|
| 91 |
- **Conditional Edges**: Traversed based on condition
|
| 92 |
- **Parallel Edges**: Used for parallel execution branches
|
| 93 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 94 |
## Orchestrator Factory
|
| 95 |
|
| 96 |
**File**: `src/orchestrator_factory.py`
|
|
|
|
| 103 |
- **Auto-detect**: Chooses based on API key availability
|
| 104 |
|
| 105 |
**Usage**:
|
| 106 |
+
```python
|
| 107 |
+
from src.orchestrator_factory import create_orchestrator
|
| 108 |
|
| 109 |
+
orchestrator = create_orchestrator(
|
| 110 |
+
search_handler=search_handler,
|
| 111 |
+
judge_handler=judge_handler,
|
| 112 |
+
config={},
|
| 113 |
+
mode="advanced" # or "simple" or None for auto-detect
|
| 114 |
+
)
|
| 115 |
+
```
|
| 116 |
|
| 117 |
## Magentic Orchestrator
|
| 118 |
|
|
|
|
| 123 |
**Features**:
|
| 124 |
- Uses `agent-framework-core`
|
| 125 |
- ChatAgent pattern with internal LLMs per agent
|
| 126 |
+
- `MagenticBuilder` with participants: searcher, hypothesizer, judge, reporter
|
| 127 |
+
- Manager orchestrates agents via `OpenAIChatClient`
|
| 128 |
+
- Requires OpenAI API key (function calling support)
|
| 129 |
+
- Event-driven: converts Magentic events to `AgentEvent` for UI streaming
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 130 |
|
| 131 |
**Requirements**:
|
| 132 |
- `agent-framework-core` package
|
| 133 |
+
- OpenAI API key
|
| 134 |
|
| 135 |
## Hierarchical Orchestrator
|
| 136 |
|
|
|
|
| 159 |
|
| 160 |
All orchestrators must initialize workflow state:
|
| 161 |
|
| 162 |
+
```python
|
| 163 |
+
from src.middleware.state_machine import init_workflow_state
|
| 164 |
+
from src.services.embeddings import get_embedding_service
|
| 165 |
+
|
| 166 |
+
embedding_service = get_embedding_service()
|
| 167 |
+
init_workflow_state(embedding_service)
|
| 168 |
+
```
|
| 169 |
|
| 170 |
## Event Streaming
|
| 171 |
|
|
|
|
| 173 |
|
| 174 |
**Event Types**:
|
| 175 |
- `started`: Research started
|
|
|
|
| 176 |
- `search_complete`: Search completed
|
|
|
|
| 177 |
- `judge_complete`: Evidence evaluation completed
|
|
|
|
| 178 |
- `hypothesizing`: Generating hypotheses
|
|
|
|
|
|
|
| 179 |
- `synthesizing`: Synthesizing results
|
| 180 |
- `complete`: Research completed
|
| 181 |
- `error`: Error occurred
|
|
|
|
| 182 |
|
| 183 |
**Event Structure**:
|
| 184 |
+
```python
|
| 185 |
+
class AgentEvent:
|
| 186 |
+
type: str
|
| 187 |
+
iteration: int | None
|
| 188 |
+
data: dict[str, Any]
|
| 189 |
+
```
|
| 190 |
|
| 191 |
## See Also
|
| 192 |
|
| 193 |
+
- [Graph Orchestration](graph-orchestration.md) - Graph-based execution details
|
| 194 |
+
- [Graph Orchestration (Detailed)](graph_orchestration.md) - Detailed graph architecture
|
| 195 |
+
- [Workflows](workflows.md) - Workflow diagrams and patterns
|
| 196 |
- [Workflow Diagrams](workflow-diagrams.md) - Detailed workflow diagrams
|
| 197 |
- [API Reference - Orchestrators](../api/orchestrators.md) - API documentation
|
| 198 |
|
docs/architecture/services.md
CHANGED
|
@@ -10,18 +10,17 @@ DeepCritical provides several services for embeddings, RAG, and statistical anal
|
|
| 10 |
|
| 11 |
**Features**:
|
| 12 |
- **No API Key Required**: Uses local sentence-transformers models
|
| 13 |
-
- **Async-Safe**: All operations use `run_in_executor()` to avoid blocking
|
| 14 |
-
- **ChromaDB Storage**:
|
| 15 |
-
- **Deduplication**: 0.
|
| 16 |
|
| 17 |
**Model**: Configurable via `settings.local_embedding_model` (default: `all-MiniLM-L6-v2`)
|
| 18 |
|
| 19 |
**Methods**:
|
| 20 |
-
- `async def embed(text: str) -> list[float]`: Generate embeddings
|
| 21 |
-
- `async def embed_batch(texts: list[str]) -> list[list[float]]`: Batch embedding
|
| 22 |
-
- `async def
|
| 23 |
-
- `async def
|
| 24 |
-
- `async def deduplicate(new_evidence: list[Evidence], threshold: float = 0.9) -> list[Evidence]`: Remove semantically duplicate evidence
|
| 25 |
|
| 26 |
**Usage**:
|
| 27 |
```python
|
|
@@ -33,21 +32,15 @@ embedding = await service.embed("text to embed")
|
|
| 33 |
|
| 34 |
## LlamaIndex RAG Service
|
| 35 |
|
| 36 |
-
**File**: `src/services/
|
| 37 |
|
| 38 |
**Purpose**: Retrieval-Augmented Generation using LlamaIndex
|
| 39 |
|
| 40 |
**Features**:
|
| 41 |
-
- **
|
| 42 |
-
- **
|
| 43 |
-
- **ChromaDB Storage**: Vector database for document storage (supports in-memory mode)
|
| 44 |
- **Metadata Preservation**: Preserves source, title, URL, date, authors
|
| 45 |
-
- **Lazy Initialization**: Graceful fallback if
|
| 46 |
-
|
| 47 |
-
**Initialization Parameters**:
|
| 48 |
-
- `use_openai_embeddings: bool | None`: Force OpenAI embeddings (None = auto-detect)
|
| 49 |
-
- `use_in_memory: bool`: Use in-memory ChromaDB client (useful for tests)
|
| 50 |
-
- `oauth_token: str | None`: Optional OAuth token from HuggingFace login (takes priority over env vars)
|
| 51 |
|
| 52 |
**Methods**:
|
| 53 |
- `async def ingest_evidence(evidence: list[Evidence]) -> None`: Ingest evidence into RAG
|
|
@@ -56,13 +49,9 @@ embedding = await service.embed("text to embed")
|
|
| 56 |
|
| 57 |
**Usage**:
|
| 58 |
```python
|
| 59 |
-
from src.services.
|
| 60 |
|
| 61 |
-
service = get_rag_service(
|
| 62 |
-
use_openai_embeddings=False, # Use local embeddings
|
| 63 |
-
use_in_memory=True, # Use in-memory ChromaDB
|
| 64 |
-
oauth_token=token # Optional HuggingFace token
|
| 65 |
-
)
|
| 66 |
if service:
|
| 67 |
documents = await service.retrieve("query", top_k=5)
|
| 68 |
```
|
|
@@ -103,19 +92,13 @@ result = await analyzer.analyze(
|
|
| 103 |
|
| 104 |
## Singleton Pattern
|
| 105 |
|
| 106 |
-
|
| 107 |
-
|
| 108 |
-
**EmbeddingService**: Uses a global variable pattern:
|
| 109 |
-
|
| 110 |
-
<!--codeinclude-->
|
| 111 |
-
[EmbeddingService Singleton](../src/services/embeddings.py) start_line:164 end_line:172
|
| 112 |
-
<!--/codeinclude-->
|
| 113 |
|
| 114 |
-
|
| 115 |
-
|
| 116 |
-
|
| 117 |
-
|
| 118 |
-
|
| 119 |
|
| 120 |
This ensures:
|
| 121 |
- Single instance per process
|
|
@@ -144,3 +127,12 @@ if settings.has_openai_key:
|
|
| 144 |
- [API Reference - Services](../api/services.md) - API documentation
|
| 145 |
- [Configuration](../configuration/index.md) - Service configuration
|
| 146 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 10 |
|
| 11 |
**Features**:
|
| 12 |
- **No API Key Required**: Uses local sentence-transformers models
|
| 13 |
+
- **Async-Safe**: All operations use `run_in_executor()` to avoid blocking
|
| 14 |
+
- **ChromaDB Storage**: Vector storage for embeddings
|
| 15 |
+
- **Deduplication**: 0.85 similarity threshold (85% similarity = duplicate)
|
| 16 |
|
| 17 |
**Model**: Configurable via `settings.local_embedding_model` (default: `all-MiniLM-L6-v2`)
|
| 18 |
|
| 19 |
**Methods**:
|
| 20 |
+
- `async def embed(text: str) -> list[float]`: Generate embeddings
|
| 21 |
+
- `async def embed_batch(texts: list[str]) -> list[list[float]]`: Batch embedding
|
| 22 |
+
- `async def similarity(text1: str, text2: str) -> float`: Calculate similarity
|
| 23 |
+
- `async def find_duplicates(texts: list[str], threshold: float = 0.85) -> list[tuple[int, int]]`: Find duplicates
|
|
|
|
| 24 |
|
| 25 |
**Usage**:
|
| 26 |
```python
|
|
|
|
| 32 |
|
| 33 |
## LlamaIndex RAG Service
|
| 34 |
|
| 35 |
+
**File**: `src/services/rag.py`
|
| 36 |
|
| 37 |
**Purpose**: Retrieval-Augmented Generation using LlamaIndex
|
| 38 |
|
| 39 |
**Features**:
|
| 40 |
+
- **OpenAI Embeddings**: Requires `OPENAI_API_KEY`
|
| 41 |
+
- **ChromaDB Storage**: Vector database for document storage
|
|
|
|
| 42 |
- **Metadata Preservation**: Preserves source, title, URL, date, authors
|
| 43 |
+
- **Lazy Initialization**: Graceful fallback if OpenAI key not available
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 44 |
|
| 45 |
**Methods**:
|
| 46 |
- `async def ingest_evidence(evidence: list[Evidence]) -> None`: Ingest evidence into RAG
|
|
|
|
| 49 |
|
| 50 |
**Usage**:
|
| 51 |
```python
|
| 52 |
+
from src.services.rag import get_rag_service
|
| 53 |
|
| 54 |
+
service = get_rag_service()
|
|
|
|
|
|
|
|
|
|
|
|
|
| 55 |
if service:
|
| 56 |
documents = await service.retrieve("query", top_k=5)
|
| 57 |
```
|
|
|
|
| 92 |
|
| 93 |
## Singleton Pattern
|
| 94 |
|
| 95 |
+
All services use the singleton pattern with `@lru_cache(maxsize=1)`:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 96 |
|
| 97 |
+
```python
|
| 98 |
+
@lru_cache(maxsize=1)
|
| 99 |
+
def get_embedding_service() -> EmbeddingService:
|
| 100 |
+
return EmbeddingService()
|
| 101 |
+
```
|
| 102 |
|
| 103 |
This ensures:
|
| 104 |
- Single instance per process
|
|
|
|
| 127 |
- [API Reference - Services](../api/services.md) - API documentation
|
| 128 |
- [Configuration](../configuration/index.md) - Service configuration
|
| 129 |
|
| 130 |
+
|
| 131 |
+
|
| 132 |
+
|
| 133 |
+
|
| 134 |
+
|
| 135 |
+
|
| 136 |
+
|
| 137 |
+
|
| 138 |
+
|
docs/architecture/tools.md
CHANGED
|
@@ -6,17 +6,30 @@ DeepCritical implements a protocol-based search tool system for retrieving evide
|
|
| 6 |
|
| 7 |
All tools implement the `SearchTool` protocol from `src/tools/base.py`:
|
| 8 |
|
| 9 |
-
|
| 10 |
-
|
| 11 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 12 |
|
| 13 |
## Rate Limiting
|
| 14 |
|
| 15 |
All tools use the `@retry` decorator from tenacity:
|
| 16 |
|
| 17 |
-
|
| 18 |
-
|
| 19 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 20 |
|
| 21 |
Tools with API rate limits implement `_rate_limit()` method and use shared rate limiters from `src/tools/rate_limiter.py`.
|
| 22 |
|
|
@@ -117,23 +130,11 @@ Missing fields are handled gracefully with defaults.
|
|
| 117 |
|
| 118 |
**Purpose**: Orchestrates parallel searches across multiple tools
|
| 119 |
|
| 120 |
-
**Initialization Parameters**:
|
| 121 |
-
- `tools: list[SearchTool]`: List of search tools to use
|
| 122 |
-
- `timeout: float = 30.0`: Timeout for each search in seconds
|
| 123 |
-
- `include_rag: bool = False`: Whether to include RAG tool in searches
|
| 124 |
-
- `auto_ingest_to_rag: bool = True`: Whether to automatically ingest results into RAG
|
| 125 |
-
- `oauth_token: str | None = None`: Optional OAuth token from HuggingFace login (for RAG LLM)
|
| 126 |
-
|
| 127 |
-
**Methods**:
|
| 128 |
-
- `async def execute(query: str, max_results_per_tool: int = 10) -> SearchResult`: Execute search across all tools in parallel
|
| 129 |
-
|
| 130 |
**Features**:
|
| 131 |
-
- Uses `asyncio.gather()` with `return_exceptions=True`
|
| 132 |
-
- Aggregates results into `SearchResult`
|
| 133 |
-
- Handles tool failures gracefully
|
| 134 |
- Deduplicates results by URL
|
| 135 |
-
- Automatically ingests results into RAG if `auto_ingest_to_rag=True`
|
| 136 |
-
- Can add RAG tool dynamically via `add_rag_tool()` method
|
| 137 |
|
| 138 |
## Tool Registration
|
| 139 |
|
|
@@ -143,21 +144,14 @@ Tools are registered in the search handler:
|
|
| 143 |
from src.tools.pubmed import PubMedTool
|
| 144 |
from src.tools.clinicaltrials import ClinicalTrialsTool
|
| 145 |
from src.tools.europepmc import EuropePMCTool
|
| 146 |
-
from src.tools.search_handler import SearchHandler
|
| 147 |
|
| 148 |
search_handler = SearchHandler(
|
| 149 |
tools=[
|
| 150 |
PubMedTool(),
|
| 151 |
ClinicalTrialsTool(),
|
| 152 |
EuropePMCTool(),
|
| 153 |
-
]
|
| 154 |
-
include_rag=True, # Include RAG tool for semantic search
|
| 155 |
-
auto_ingest_to_rag=True, # Automatically ingest results into RAG
|
| 156 |
-
oauth_token=token # Optional HuggingFace token for RAG LLM
|
| 157 |
)
|
| 158 |
-
|
| 159 |
-
# Execute search
|
| 160 |
-
result = await search_handler.execute("query", max_results_per_tool=10)
|
| 161 |
```
|
| 162 |
|
| 163 |
## See Also
|
|
@@ -165,3 +159,13 @@ result = await search_handler.execute("query", max_results_per_tool=10)
|
|
| 165 |
- [Services](services.md) - RAG and embedding services
|
| 166 |
- [API Reference - Tools](../api/tools.md) - API documentation
|
| 167 |
- [Contributing - Implementation Patterns](../contributing/implementation-patterns.md) - Development guidelines
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 6 |
|
| 7 |
All tools implement the `SearchTool` protocol from `src/tools/base.py`:
|
| 8 |
|
| 9 |
+
```python
|
| 10 |
+
class SearchTool(Protocol):
|
| 11 |
+
@property
|
| 12 |
+
def name(self) -> str: ...
|
| 13 |
+
|
| 14 |
+
async def search(
|
| 15 |
+
self,
|
| 16 |
+
query: str,
|
| 17 |
+
max_results: int = 10
|
| 18 |
+
) -> list[Evidence]: ...
|
| 19 |
+
```
|
| 20 |
|
| 21 |
## Rate Limiting
|
| 22 |
|
| 23 |
All tools use the `@retry` decorator from tenacity:
|
| 24 |
|
| 25 |
+
```python
|
| 26 |
+
@retry(
|
| 27 |
+
stop=stop_after_attempt(3),
|
| 28 |
+
wait=wait_exponential(...)
|
| 29 |
+
)
|
| 30 |
+
async def search(self, query: str, max_results: int = 10) -> list[Evidence]:
|
| 31 |
+
# Implementation
|
| 32 |
+
```
|
| 33 |
|
| 34 |
Tools with API rate limits implement `_rate_limit()` method and use shared rate limiters from `src/tools/rate_limiter.py`.
|
| 35 |
|
|
|
|
| 130 |
|
| 131 |
**Purpose**: Orchestrates parallel searches across multiple tools
|
| 132 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 133 |
**Features**:
|
| 134 |
+
- Uses `asyncio.gather()` with `return_exceptions=True`
|
| 135 |
+
- Aggregates results into `SearchResult`
|
| 136 |
+
- Handles tool failures gracefully
|
| 137 |
- Deduplicates results by URL
|
|
|
|
|
|
|
| 138 |
|
| 139 |
## Tool Registration
|
| 140 |
|
|
|
|
| 144 |
from src.tools.pubmed import PubMedTool
|
| 145 |
from src.tools.clinicaltrials import ClinicalTrialsTool
|
| 146 |
from src.tools.europepmc import EuropePMCTool
|
|
|
|
| 147 |
|
| 148 |
search_handler = SearchHandler(
|
| 149 |
tools=[
|
| 150 |
PubMedTool(),
|
| 151 |
ClinicalTrialsTool(),
|
| 152 |
EuropePMCTool(),
|
| 153 |
+
]
|
|
|
|
|
|
|
|
|
|
| 154 |
)
|
|
|
|
|
|
|
|
|
|
| 155 |
```
|
| 156 |
|
| 157 |
## See Also
|
|
|
|
| 159 |
- [Services](services.md) - RAG and embedding services
|
| 160 |
- [API Reference - Tools](../api/tools.md) - API documentation
|
| 161 |
- [Contributing - Implementation Patterns](../contributing/implementation-patterns.md) - Development guidelines
|
| 162 |
+
|
| 163 |
+
|
| 164 |
+
|
| 165 |
+
|
| 166 |
+
|
| 167 |
+
|
| 168 |
+
|
| 169 |
+
|
| 170 |
+
|
| 171 |
+
|
docs/architecture/workflow-diagrams.md
CHANGED
|
@@ -627,10 +627,23 @@ gantt
|
|
| 627 |
## Implementation Highlights
|
| 628 |
|
| 629 |
**Simple 4-Agent Setup:**
|
| 630 |
-
|
| 631 |
-
|
| 632 |
-
|
| 633 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 634 |
|
| 635 |
**Manager handles quality assessment in its instructions:**
|
| 636 |
- Checks hypothesis quality (testable, novel, clear)
|
|
@@ -651,5 +664,7 @@ No separate Judge Agent needed - manager does it all!
|
|
| 651 |
## See Also
|
| 652 |
|
| 653 |
- [Orchestrators](orchestrators.md) - Overview of all orchestrator patterns
|
| 654 |
-
- [Graph Orchestration](
|
|
|
|
|
|
|
| 655 |
- [API Reference - Orchestrators](../api/orchestrators.md) - API documentation
|
|
|
|
| 627 |
## Implementation Highlights
|
| 628 |
|
| 629 |
**Simple 4-Agent Setup:**
|
| 630 |
+
```python
|
| 631 |
+
workflow = (
|
| 632 |
+
MagenticBuilder()
|
| 633 |
+
.participants(
|
| 634 |
+
hypothesis=HypothesisAgent(tools=[background_tool]),
|
| 635 |
+
search=SearchAgent(tools=[web_search, rag_tool]),
|
| 636 |
+
analysis=AnalysisAgent(tools=[code_execution]),
|
| 637 |
+
report=ReportAgent(tools=[code_execution, visualization])
|
| 638 |
+
)
|
| 639 |
+
.with_standard_manager(
|
| 640 |
+
chat_client=AnthropicClient(model="claude-sonnet-4"),
|
| 641 |
+
max_round_count=15, # Prevent infinite loops
|
| 642 |
+
max_stall_count=3 # Detect stuck workflows
|
| 643 |
+
)
|
| 644 |
+
.build()
|
| 645 |
+
)
|
| 646 |
+
```
|
| 647 |
|
| 648 |
**Manager handles quality assessment in its instructions:**
|
| 649 |
- Checks hypothesis quality (testable, novel, clear)
|
|
|
|
| 664 |
## See Also
|
| 665 |
|
| 666 |
- [Orchestrators](orchestrators.md) - Overview of all orchestrator patterns
|
| 667 |
+
- [Graph Orchestration](graph-orchestration.md) - Graph-based execution overview
|
| 668 |
+
- [Graph Orchestration (Detailed)](graph_orchestration.md) - Detailed graph architecture
|
| 669 |
+
- [Workflows](workflows.md) - Workflow patterns summary
|
| 670 |
- [API Reference - Orchestrators](../api/orchestrators.md) - API documentation
|
docs/architecture/workflows.md
ADDED
|
@@ -0,0 +1,662 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# DeepCritical Workflow - Simplified Magentic Architecture
|
| 2 |
+
|
| 3 |
+
> **Architecture Pattern**: Microsoft Magentic Orchestration
|
| 4 |
+
> **Design Philosophy**: Simple, dynamic, manager-driven coordination
|
| 5 |
+
> **Key Innovation**: Intelligent manager replaces rigid sequential phases
|
| 6 |
+
|
| 7 |
+
---
|
| 8 |
+
|
| 9 |
+
## 1. High-Level Magentic Workflow
|
| 10 |
+
|
| 11 |
+
```mermaid
|
| 12 |
+
flowchart TD
|
| 13 |
+
Start([User Query]) --> Manager[Magentic Manager<br/>Plan • Select • Assess • Adapt]
|
| 14 |
+
|
| 15 |
+
Manager -->|Plans| Task1[Task Decomposition]
|
| 16 |
+
Task1 --> Manager
|
| 17 |
+
|
| 18 |
+
Manager -->|Selects & Executes| HypAgent[Hypothesis Agent]
|
| 19 |
+
Manager -->|Selects & Executes| SearchAgent[Search Agent]
|
| 20 |
+
Manager -->|Selects & Executes| AnalysisAgent[Analysis Agent]
|
| 21 |
+
Manager -->|Selects & Executes| ReportAgent[Report Agent]
|
| 22 |
+
|
| 23 |
+
HypAgent -->|Results| Manager
|
| 24 |
+
SearchAgent -->|Results| Manager
|
| 25 |
+
AnalysisAgent -->|Results| Manager
|
| 26 |
+
ReportAgent -->|Results| Manager
|
| 27 |
+
|
| 28 |
+
Manager -->|Assesses Quality| Decision{Good Enough?}
|
| 29 |
+
Decision -->|No - Refine| Manager
|
| 30 |
+
Decision -->|No - Different Agent| Manager
|
| 31 |
+
Decision -->|No - Stalled| Replan[Reset Plan]
|
| 32 |
+
Replan --> Manager
|
| 33 |
+
|
| 34 |
+
Decision -->|Yes| Synthesis[Synthesize Final Result]
|
| 35 |
+
Synthesis --> Output([Research Report])
|
| 36 |
+
|
| 37 |
+
style Start fill:#e1f5e1
|
| 38 |
+
style Manager fill:#ffe6e6
|
| 39 |
+
style HypAgent fill:#fff4e6
|
| 40 |
+
style SearchAgent fill:#fff4e6
|
| 41 |
+
style AnalysisAgent fill:#fff4e6
|
| 42 |
+
style ReportAgent fill:#fff4e6
|
| 43 |
+
style Decision fill:#ffd6d6
|
| 44 |
+
style Synthesis fill:#d4edda
|
| 45 |
+
style Output fill:#e1f5e1
|
| 46 |
+
```
|
| 47 |
+
|
| 48 |
+
## 2. Magentic Manager: The 6-Phase Cycle
|
| 49 |
+
|
| 50 |
+
```mermaid
|
| 51 |
+
flowchart LR
|
| 52 |
+
P1[1. Planning<br/>Analyze task<br/>Create strategy] --> P2[2. Agent Selection<br/>Pick best agent<br/>for subtask]
|
| 53 |
+
P2 --> P3[3. Execution<br/>Run selected<br/>agent with tools]
|
| 54 |
+
P3 --> P4[4. Assessment<br/>Evaluate quality<br/>Check progress]
|
| 55 |
+
P4 --> Decision{Quality OK?<br/>Progress made?}
|
| 56 |
+
Decision -->|Yes| P6[6. Synthesis<br/>Combine results<br/>Generate report]
|
| 57 |
+
Decision -->|No| P5[5. Iteration<br/>Adjust plan<br/>Try again]
|
| 58 |
+
P5 --> P2
|
| 59 |
+
P6 --> Done([Complete])
|
| 60 |
+
|
| 61 |
+
style P1 fill:#fff4e6
|
| 62 |
+
style P2 fill:#ffe6e6
|
| 63 |
+
style P3 fill:#e6f3ff
|
| 64 |
+
style P4 fill:#ffd6d6
|
| 65 |
+
style P5 fill:#fff3cd
|
| 66 |
+
style P6 fill:#d4edda
|
| 67 |
+
style Done fill:#e1f5e1
|
| 68 |
+
```
|
| 69 |
+
|
| 70 |
+
## 3. Simplified Agent Architecture
|
| 71 |
+
|
| 72 |
+
```mermaid
|
| 73 |
+
graph TB
|
| 74 |
+
subgraph "Orchestration Layer"
|
| 75 |
+
Manager[Magentic Manager<br/>• Plans workflow<br/>• Selects agents<br/>• Assesses quality<br/>• Adapts strategy]
|
| 76 |
+
SharedContext[(Shared Context<br/>• Hypotheses<br/>• Search Results<br/>• Analysis<br/>• Progress)]
|
| 77 |
+
Manager <--> SharedContext
|
| 78 |
+
end
|
| 79 |
+
|
| 80 |
+
subgraph "Specialist Agents"
|
| 81 |
+
HypAgent[Hypothesis Agent<br/>• Domain understanding<br/>• Hypothesis generation<br/>• Testability refinement]
|
| 82 |
+
SearchAgent[Search Agent<br/>• Multi-source search<br/>• RAG retrieval<br/>• Result ranking]
|
| 83 |
+
AnalysisAgent[Analysis Agent<br/>• Evidence extraction<br/>• Statistical analysis<br/>• Code execution]
|
| 84 |
+
ReportAgent[Report Agent<br/>• Report assembly<br/>• Visualization<br/>• Citation formatting]
|
| 85 |
+
end
|
| 86 |
+
|
| 87 |
+
subgraph "MCP Tools"
|
| 88 |
+
WebSearch[Web Search<br/>PubMed • arXiv • bioRxiv]
|
| 89 |
+
CodeExec[Code Execution<br/>Sandboxed Python]
|
| 90 |
+
RAG[RAG Retrieval<br/>Vector DB • Embeddings]
|
| 91 |
+
Viz[Visualization<br/>Charts • Graphs]
|
| 92 |
+
end
|
| 93 |
+
|
| 94 |
+
Manager -->|Selects & Directs| HypAgent
|
| 95 |
+
Manager -->|Selects & Directs| SearchAgent
|
| 96 |
+
Manager -->|Selects & Directs| AnalysisAgent
|
| 97 |
+
Manager -->|Selects & Directs| ReportAgent
|
| 98 |
+
|
| 99 |
+
HypAgent --> SharedContext
|
| 100 |
+
SearchAgent --> SharedContext
|
| 101 |
+
AnalysisAgent --> SharedContext
|
| 102 |
+
ReportAgent --> SharedContext
|
| 103 |
+
|
| 104 |
+
SearchAgent --> WebSearch
|
| 105 |
+
SearchAgent --> RAG
|
| 106 |
+
AnalysisAgent --> CodeExec
|
| 107 |
+
ReportAgent --> CodeExec
|
| 108 |
+
ReportAgent --> Viz
|
| 109 |
+
|
| 110 |
+
style Manager fill:#ffe6e6
|
| 111 |
+
style SharedContext fill:#ffe6f0
|
| 112 |
+
style HypAgent fill:#fff4e6
|
| 113 |
+
style SearchAgent fill:#fff4e6
|
| 114 |
+
style AnalysisAgent fill:#fff4e6
|
| 115 |
+
style ReportAgent fill:#fff4e6
|
| 116 |
+
style WebSearch fill:#e6f3ff
|
| 117 |
+
style CodeExec fill:#e6f3ff
|
| 118 |
+
style RAG fill:#e6f3ff
|
| 119 |
+
style Viz fill:#e6f3ff
|
| 120 |
+
```
|
| 121 |
+
|
| 122 |
+
## 4. Dynamic Workflow Example
|
| 123 |
+
|
| 124 |
+
```mermaid
|
| 125 |
+
sequenceDiagram
|
| 126 |
+
participant User
|
| 127 |
+
participant Manager
|
| 128 |
+
participant HypAgent
|
| 129 |
+
participant SearchAgent
|
| 130 |
+
participant AnalysisAgent
|
| 131 |
+
participant ReportAgent
|
| 132 |
+
|
| 133 |
+
User->>Manager: "Research protein folding in Alzheimer's"
|
| 134 |
+
|
| 135 |
+
Note over Manager: PLAN: Generate hypotheses → Search → Analyze → Report
|
| 136 |
+
|
| 137 |
+
Manager->>HypAgent: Generate 3 hypotheses
|
| 138 |
+
HypAgent-->>Manager: Returns 3 hypotheses
|
| 139 |
+
Note over Manager: ASSESS: Good quality, proceed
|
| 140 |
+
|
| 141 |
+
Manager->>SearchAgent: Search literature for hypothesis 1
|
| 142 |
+
SearchAgent-->>Manager: Returns 15 papers
|
| 143 |
+
Note over Manager: ASSESS: Good results, continue
|
| 144 |
+
|
| 145 |
+
Manager->>SearchAgent: Search for hypothesis 2
|
| 146 |
+
SearchAgent-->>Manager: Only 2 papers found
|
| 147 |
+
Note over Manager: ASSESS: Insufficient, refine search
|
| 148 |
+
|
| 149 |
+
Manager->>SearchAgent: Refined query for hypothesis 2
|
| 150 |
+
SearchAgent-->>Manager: Returns 12 papers
|
| 151 |
+
Note over Manager: ASSESS: Better, proceed
|
| 152 |
+
|
| 153 |
+
Manager->>AnalysisAgent: Analyze evidence for all hypotheses
|
| 154 |
+
AnalysisAgent-->>Manager: Returns analysis with code
|
| 155 |
+
Note over Manager: ASSESS: Complete, generate report
|
| 156 |
+
|
| 157 |
+
Manager->>ReportAgent: Create comprehensive report
|
| 158 |
+
ReportAgent-->>Manager: Returns formatted report
|
| 159 |
+
Note over Manager: SYNTHESIZE: Combine all results
|
| 160 |
+
|
| 161 |
+
Manager->>User: Final Research Report
|
| 162 |
+
```
|
| 163 |
+
|
| 164 |
+
## 5. Manager Decision Logic
|
| 165 |
+
|
| 166 |
+
```mermaid
|
| 167 |
+
flowchart TD
|
| 168 |
+
Start([Manager Receives Task]) --> Plan[Create Initial Plan]
|
| 169 |
+
|
| 170 |
+
Plan --> Select[Select Agent for Next Subtask]
|
| 171 |
+
Select --> Execute[Execute Agent]
|
| 172 |
+
Execute --> Collect[Collect Results]
|
| 173 |
+
|
| 174 |
+
Collect --> Assess[Assess Quality & Progress]
|
| 175 |
+
|
| 176 |
+
Assess --> Q1{Quality Sufficient?}
|
| 177 |
+
Q1 -->|No| Q2{Same Agent Can Fix?}
|
| 178 |
+
Q2 -->|Yes| Feedback[Provide Specific Feedback]
|
| 179 |
+
Feedback --> Execute
|
| 180 |
+
Q2 -->|No| Different[Try Different Agent]
|
| 181 |
+
Different --> Select
|
| 182 |
+
|
| 183 |
+
Q1 -->|Yes| Q3{Task Complete?}
|
| 184 |
+
Q3 -->|No| Q4{Making Progress?}
|
| 185 |
+
Q4 -->|Yes| Select
|
| 186 |
+
Q4 -->|No - Stalled| Replan[Reset Plan & Approach]
|
| 187 |
+
Replan --> Plan
|
| 188 |
+
|
| 189 |
+
Q3 -->|Yes| Synth[Synthesize Final Result]
|
| 190 |
+
Synth --> Done([Return Report])
|
| 191 |
+
|
| 192 |
+
style Start fill:#e1f5e1
|
| 193 |
+
style Plan fill:#fff4e6
|
| 194 |
+
style Select fill:#ffe6e6
|
| 195 |
+
style Execute fill:#e6f3ff
|
| 196 |
+
style Assess fill:#ffd6d6
|
| 197 |
+
style Q1 fill:#ffe6e6
|
| 198 |
+
style Q2 fill:#ffe6e6
|
| 199 |
+
style Q3 fill:#ffe6e6
|
| 200 |
+
style Q4 fill:#ffe6e6
|
| 201 |
+
style Synth fill:#d4edda
|
| 202 |
+
style Done fill:#e1f5e1
|
| 203 |
+
```
|
| 204 |
+
|
| 205 |
+
## 6. Hypothesis Agent Workflow
|
| 206 |
+
|
| 207 |
+
```mermaid
|
| 208 |
+
flowchart LR
|
| 209 |
+
Input[Research Query] --> Domain[Identify Domain<br/>& Key Concepts]
|
| 210 |
+
Domain --> Context[Retrieve Background<br/>Knowledge]
|
| 211 |
+
Context --> Generate[Generate 3-5<br/>Initial Hypotheses]
|
| 212 |
+
Generate --> Refine[Refine for<br/>Testability]
|
| 213 |
+
Refine --> Rank[Rank by<br/>Quality Score]
|
| 214 |
+
Rank --> Output[Return Top<br/>Hypotheses]
|
| 215 |
+
|
| 216 |
+
Output --> Struct[Hypothesis Structure:<br/>• Statement<br/>• Rationale<br/>• Testability Score<br/>• Data Requirements<br/>• Expected Outcomes]
|
| 217 |
+
|
| 218 |
+
style Input fill:#e1f5e1
|
| 219 |
+
style Output fill:#fff4e6
|
| 220 |
+
style Struct fill:#e6f3ff
|
| 221 |
+
```
|
| 222 |
+
|
| 223 |
+
## 7. Search Agent Workflow
|
| 224 |
+
|
| 225 |
+
```mermaid
|
| 226 |
+
flowchart TD
|
| 227 |
+
Input[Hypotheses] --> Strategy[Formulate Search<br/>Strategy per Hypothesis]
|
| 228 |
+
|
| 229 |
+
Strategy --> Multi[Multi-Source Search]
|
| 230 |
+
|
| 231 |
+
Multi --> PubMed[PubMed Search<br/>via MCP]
|
| 232 |
+
Multi --> ArXiv[arXiv Search<br/>via MCP]
|
| 233 |
+
Multi --> BioRxiv[bioRxiv Search<br/>via MCP]
|
| 234 |
+
|
| 235 |
+
PubMed --> Aggregate[Aggregate Results]
|
| 236 |
+
ArXiv --> Aggregate
|
| 237 |
+
BioRxiv --> Aggregate
|
| 238 |
+
|
| 239 |
+
Aggregate --> Filter[Filter & Rank<br/>by Relevance]
|
| 240 |
+
Filter --> Dedup[Deduplicate<br/>Cross-Reference]
|
| 241 |
+
Dedup --> Embed[Embed Documents<br/>via MCP]
|
| 242 |
+
Embed --> Vector[(Vector DB)]
|
| 243 |
+
Vector --> RAGRetrieval[RAG Retrieval<br/>Top-K per Hypothesis]
|
| 244 |
+
RAGRetrieval --> Output[Return Contextualized<br/>Search Results]
|
| 245 |
+
|
| 246 |
+
style Input fill:#fff4e6
|
| 247 |
+
style Multi fill:#ffe6e6
|
| 248 |
+
style Vector fill:#ffe6f0
|
| 249 |
+
style Output fill:#e6f3ff
|
| 250 |
+
```
|
| 251 |
+
|
| 252 |
+
## 8. Analysis Agent Workflow
|
| 253 |
+
|
| 254 |
+
```mermaid
|
| 255 |
+
flowchart TD
|
| 256 |
+
Input1[Hypotheses] --> Extract
|
| 257 |
+
Input2[Search Results] --> Extract[Extract Evidence<br/>per Hypothesis]
|
| 258 |
+
|
| 259 |
+
Extract --> Methods[Determine Analysis<br/>Methods Needed]
|
| 260 |
+
|
| 261 |
+
Methods --> Branch{Requires<br/>Computation?}
|
| 262 |
+
Branch -->|Yes| GenCode[Generate Python<br/>Analysis Code]
|
| 263 |
+
Branch -->|No| Qual[Qualitative<br/>Synthesis]
|
| 264 |
+
|
| 265 |
+
GenCode --> Execute[Execute Code<br/>via MCP Sandbox]
|
| 266 |
+
Execute --> Interpret1[Interpret<br/>Results]
|
| 267 |
+
Qual --> Interpret2[Interpret<br/>Findings]
|
| 268 |
+
|
| 269 |
+
Interpret1 --> Synthesize[Synthesize Evidence<br/>Across Sources]
|
| 270 |
+
Interpret2 --> Synthesize
|
| 271 |
+
|
| 272 |
+
Synthesize --> Verdict[Determine Verdict<br/>per Hypothesis]
|
| 273 |
+
Verdict --> Support[• Supported<br/>• Refuted<br/>• Inconclusive]
|
| 274 |
+
Support --> Gaps[Identify Knowledge<br/>Gaps & Limitations]
|
| 275 |
+
Gaps --> Output[Return Analysis<br/>Report]
|
| 276 |
+
|
| 277 |
+
style Input1 fill:#fff4e6
|
| 278 |
+
style Input2 fill:#e6f3ff
|
| 279 |
+
style Execute fill:#ffe6e6
|
| 280 |
+
style Output fill:#e6ffe6
|
| 281 |
+
```
|
| 282 |
+
|
| 283 |
+
## 9. Report Agent Workflow
|
| 284 |
+
|
| 285 |
+
```mermaid
|
| 286 |
+
flowchart TD
|
| 287 |
+
Input1[Query] --> Assemble
|
| 288 |
+
Input2[Hypotheses] --> Assemble
|
| 289 |
+
Input3[Search Results] --> Assemble
|
| 290 |
+
Input4[Analysis] --> Assemble[Assemble Report<br/>Sections]
|
| 291 |
+
|
| 292 |
+
Assemble --> Exec[Executive Summary]
|
| 293 |
+
Assemble --> Intro[Introduction]
|
| 294 |
+
Assemble --> Methods[Methods]
|
| 295 |
+
Assemble --> Results[Results per<br/>Hypothesis]
|
| 296 |
+
Assemble --> Discussion[Discussion]
|
| 297 |
+
Assemble --> Future[Future Directions]
|
| 298 |
+
Assemble --> Refs[References]
|
| 299 |
+
|
| 300 |
+
Results --> VizCheck{Needs<br/>Visualization?}
|
| 301 |
+
VizCheck -->|Yes| GenViz[Generate Viz Code]
|
| 302 |
+
GenViz --> ExecViz[Execute via MCP<br/>Create Charts]
|
| 303 |
+
ExecViz --> Combine
|
| 304 |
+
VizCheck -->|No| Combine[Combine All<br/>Sections]
|
| 305 |
+
|
| 306 |
+
Exec --> Combine
|
| 307 |
+
Intro --> Combine
|
| 308 |
+
Methods --> Combine
|
| 309 |
+
Discussion --> Combine
|
| 310 |
+
Future --> Combine
|
| 311 |
+
Refs --> Combine
|
| 312 |
+
|
| 313 |
+
Combine --> Format[Format Output]
|
| 314 |
+
Format --> MD[Markdown]
|
| 315 |
+
Format --> PDF[PDF]
|
| 316 |
+
Format --> JSON[JSON]
|
| 317 |
+
|
| 318 |
+
MD --> Output[Return Final<br/>Report]
|
| 319 |
+
PDF --> Output
|
| 320 |
+
JSON --> Output
|
| 321 |
+
|
| 322 |
+
style Input1 fill:#e1f5e1
|
| 323 |
+
style Input2 fill:#fff4e6
|
| 324 |
+
style Input3 fill:#e6f3ff
|
| 325 |
+
style Input4 fill:#e6ffe6
|
| 326 |
+
style Output fill:#d4edda
|
| 327 |
+
```
|
| 328 |
+
|
| 329 |
+
## 10. Data Flow & Event Streaming
|
| 330 |
+
|
| 331 |
+
```mermaid
|
| 332 |
+
flowchart TD
|
| 333 |
+
User[👤 User] -->|Research Query| UI[Gradio UI]
|
| 334 |
+
UI -->|Submit| Manager[Magentic Manager]
|
| 335 |
+
|
| 336 |
+
Manager -->|Event: Planning| UI
|
| 337 |
+
Manager -->|Select Agent| HypAgent[Hypothesis Agent]
|
| 338 |
+
HypAgent -->|Event: Delta/Message| UI
|
| 339 |
+
HypAgent -->|Hypotheses| Context[(Shared Context)]
|
| 340 |
+
|
| 341 |
+
Context -->|Retrieved by| Manager
|
| 342 |
+
Manager -->|Select Agent| SearchAgent[Search Agent]
|
| 343 |
+
SearchAgent -->|MCP Request| WebSearch[Web Search Tool]
|
| 344 |
+
WebSearch -->|Results| SearchAgent
|
| 345 |
+
SearchAgent -->|Event: Delta/Message| UI
|
| 346 |
+
SearchAgent -->|Documents| Context
|
| 347 |
+
SearchAgent -->|Embeddings| VectorDB[(Vector DB)]
|
| 348 |
+
|
| 349 |
+
Context -->|Retrieved by| Manager
|
| 350 |
+
Manager -->|Select Agent| AnalysisAgent[Analysis Agent]
|
| 351 |
+
AnalysisAgent -->|MCP Request| CodeExec[Code Execution Tool]
|
| 352 |
+
CodeExec -->|Results| AnalysisAgent
|
| 353 |
+
AnalysisAgent -->|Event: Delta/Message| UI
|
| 354 |
+
AnalysisAgent -->|Analysis| Context
|
| 355 |
+
|
| 356 |
+
Context -->|Retrieved by| Manager
|
| 357 |
+
Manager -->|Select Agent| ReportAgent[Report Agent]
|
| 358 |
+
ReportAgent -->|MCP Request| CodeExec
|
| 359 |
+
ReportAgent -->|Event: Delta/Message| UI
|
| 360 |
+
ReportAgent -->|Report| Context
|
| 361 |
+
|
| 362 |
+
Manager -->|Event: Final Result| UI
|
| 363 |
+
UI -->|Display| User
|
| 364 |
+
|
| 365 |
+
style User fill:#e1f5e1
|
| 366 |
+
style UI fill:#e6f3ff
|
| 367 |
+
style Manager fill:#ffe6e6
|
| 368 |
+
style Context fill:#ffe6f0
|
| 369 |
+
style VectorDB fill:#ffe6f0
|
| 370 |
+
style WebSearch fill:#f0f0f0
|
| 371 |
+
style CodeExec fill:#f0f0f0
|
| 372 |
+
```
|
| 373 |
+
|
| 374 |
+
## 11. MCP Tool Architecture
|
| 375 |
+
|
| 376 |
+
```mermaid
|
| 377 |
+
graph TB
|
| 378 |
+
subgraph "Agent Layer"
|
| 379 |
+
Manager[Magentic Manager]
|
| 380 |
+
HypAgent[Hypothesis Agent]
|
| 381 |
+
SearchAgent[Search Agent]
|
| 382 |
+
AnalysisAgent[Analysis Agent]
|
| 383 |
+
ReportAgent[Report Agent]
|
| 384 |
+
end
|
| 385 |
+
|
| 386 |
+
subgraph "MCP Protocol Layer"
|
| 387 |
+
Registry[MCP Tool Registry<br/>• Discovers tools<br/>• Routes requests<br/>• Manages connections]
|
| 388 |
+
end
|
| 389 |
+
|
| 390 |
+
subgraph "MCP Servers"
|
| 391 |
+
Server1[Web Search Server<br/>localhost:8001<br/>• PubMed<br/>• arXiv<br/>• bioRxiv]
|
| 392 |
+
Server2[Code Execution Server<br/>localhost:8002<br/>• Sandboxed Python<br/>• Package management]
|
| 393 |
+
Server3[RAG Server<br/>localhost:8003<br/>• Vector embeddings<br/>• Similarity search]
|
| 394 |
+
Server4[Visualization Server<br/>localhost:8004<br/>• Chart generation<br/>• Plot rendering]
|
| 395 |
+
end
|
| 396 |
+
|
| 397 |
+
subgraph "External Services"
|
| 398 |
+
PubMed[PubMed API]
|
| 399 |
+
ArXiv[arXiv API]
|
| 400 |
+
BioRxiv[bioRxiv API]
|
| 401 |
+
Modal[Modal Sandbox]
|
| 402 |
+
ChromaDB[(ChromaDB)]
|
| 403 |
+
end
|
| 404 |
+
|
| 405 |
+
SearchAgent -->|Request| Registry
|
| 406 |
+
AnalysisAgent -->|Request| Registry
|
| 407 |
+
ReportAgent -->|Request| Registry
|
| 408 |
+
|
| 409 |
+
Registry --> Server1
|
| 410 |
+
Registry --> Server2
|
| 411 |
+
Registry --> Server3
|
| 412 |
+
Registry --> Server4
|
| 413 |
+
|
| 414 |
+
Server1 --> PubMed
|
| 415 |
+
Server1 --> ArXiv
|
| 416 |
+
Server1 --> BioRxiv
|
| 417 |
+
Server2 --> Modal
|
| 418 |
+
Server3 --> ChromaDB
|
| 419 |
+
|
| 420 |
+
style Manager fill:#ffe6e6
|
| 421 |
+
style Registry fill:#fff4e6
|
| 422 |
+
style Server1 fill:#e6f3ff
|
| 423 |
+
style Server2 fill:#e6f3ff
|
| 424 |
+
style Server3 fill:#e6f3ff
|
| 425 |
+
style Server4 fill:#e6f3ff
|
| 426 |
+
```
|
| 427 |
+
|
| 428 |
+
## 12. Progress Tracking & Stall Detection
|
| 429 |
+
|
| 430 |
+
```mermaid
|
| 431 |
+
stateDiagram-v2
|
| 432 |
+
[*] --> Initialization: User Query
|
| 433 |
+
|
| 434 |
+
Initialization --> Planning: Manager starts
|
| 435 |
+
|
| 436 |
+
Planning --> AgentExecution: Select agent
|
| 437 |
+
|
| 438 |
+
AgentExecution --> Assessment: Collect results
|
| 439 |
+
|
| 440 |
+
Assessment --> QualityCheck: Evaluate output
|
| 441 |
+
|
| 442 |
+
QualityCheck --> AgentExecution: Poor quality<br/>(retry < max_rounds)
|
| 443 |
+
QualityCheck --> Planning: Poor quality<br/>(try different agent)
|
| 444 |
+
QualityCheck --> NextAgent: Good quality<br/>(task incomplete)
|
| 445 |
+
QualityCheck --> Synthesis: Good quality<br/>(task complete)
|
| 446 |
+
|
| 447 |
+
NextAgent --> AgentExecution: Select next agent
|
| 448 |
+
|
| 449 |
+
state StallDetection <<choice>>
|
| 450 |
+
Assessment --> StallDetection: Check progress
|
| 451 |
+
StallDetection --> Planning: No progress<br/>(stall count < max)
|
| 452 |
+
StallDetection --> ErrorRecovery: No progress<br/>(max stalls reached)
|
| 453 |
+
|
| 454 |
+
ErrorRecovery --> PartialReport: Generate partial results
|
| 455 |
+
PartialReport --> [*]
|
| 456 |
+
|
| 457 |
+
Synthesis --> FinalReport: Combine all outputs
|
| 458 |
+
FinalReport --> [*]
|
| 459 |
+
|
| 460 |
+
note right of QualityCheck
|
| 461 |
+
Manager assesses:
|
| 462 |
+
• Output completeness
|
| 463 |
+
• Quality metrics
|
| 464 |
+
• Progress made
|
| 465 |
+
end note
|
| 466 |
+
|
| 467 |
+
note right of StallDetection
|
| 468 |
+
Stall = no new progress
|
| 469 |
+
after agent execution
|
| 470 |
+
Triggers plan reset
|
| 471 |
+
end note
|
| 472 |
+
```
|
| 473 |
+
|
| 474 |
+
## 13. Gradio UI Integration
|
| 475 |
+
|
| 476 |
+
```mermaid
|
| 477 |
+
graph TD
|
| 478 |
+
App[Gradio App<br/>DeepCritical Research Agent]
|
| 479 |
+
|
| 480 |
+
App --> Input[Input Section]
|
| 481 |
+
App --> Status[Status Section]
|
| 482 |
+
App --> Output[Output Section]
|
| 483 |
+
|
| 484 |
+
Input --> Query[Research Question<br/>Text Area]
|
| 485 |
+
Input --> Controls[Controls]
|
| 486 |
+
Controls --> MaxHyp[Max Hypotheses: 1-10]
|
| 487 |
+
Controls --> MaxRounds[Max Rounds: 5-20]
|
| 488 |
+
Controls --> Submit[Start Research Button]
|
| 489 |
+
|
| 490 |
+
Status --> Log[Real-time Event Log<br/>• Manager planning<br/>• Agent selection<br/>• Execution updates<br/>• Quality assessment]
|
| 491 |
+
Status --> Progress[Progress Tracker<br/>• Current agent<br/>• Round count<br/>• Stall count]
|
| 492 |
+
|
| 493 |
+
Output --> Tabs[Tabbed Results]
|
| 494 |
+
Tabs --> Tab1[Hypotheses Tab<br/>Generated hypotheses with scores]
|
| 495 |
+
Tabs --> Tab2[Search Results Tab<br/>Papers & sources found]
|
| 496 |
+
Tabs --> Tab3[Analysis Tab<br/>Evidence & verdicts]
|
| 497 |
+
Tabs --> Tab4[Report Tab<br/>Final research report]
|
| 498 |
+
Tab4 --> Download[Download Report<br/>MD / PDF / JSON]
|
| 499 |
+
|
| 500 |
+
Submit -.->|Triggers| Workflow[Magentic Workflow]
|
| 501 |
+
Workflow -.->|MagenticOrchestratorMessageEvent| Log
|
| 502 |
+
Workflow -.->|MagenticAgentDeltaEvent| Log
|
| 503 |
+
Workflow -.->|MagenticAgentMessageEvent| Log
|
| 504 |
+
Workflow -.->|MagenticFinalResultEvent| Tab4
|
| 505 |
+
|
| 506 |
+
style App fill:#e1f5e1
|
| 507 |
+
style Input fill:#fff4e6
|
| 508 |
+
style Status fill:#e6f3ff
|
| 509 |
+
style Output fill:#e6ffe6
|
| 510 |
+
style Workflow fill:#ffe6e6
|
| 511 |
+
```
|
| 512 |
+
|
| 513 |
+
## 14. Complete System Context
|
| 514 |
+
|
| 515 |
+
```mermaid
|
| 516 |
+
graph LR
|
| 517 |
+
User[👤 Researcher<br/>Asks research questions] -->|Submits query| DC[DeepCritical<br/>Magentic Workflow]
|
| 518 |
+
|
| 519 |
+
DC -->|Literature search| PubMed[PubMed API<br/>Medical papers]
|
| 520 |
+
DC -->|Preprint search| ArXiv[arXiv API<br/>Scientific preprints]
|
| 521 |
+
DC -->|Biology search| BioRxiv[bioRxiv API<br/>Biology preprints]
|
| 522 |
+
DC -->|Agent reasoning| Claude[Claude API<br/>Sonnet 4 / Opus]
|
| 523 |
+
DC -->|Code execution| Modal[Modal Sandbox<br/>Safe Python env]
|
| 524 |
+
DC -->|Vector storage| Chroma[ChromaDB<br/>Embeddings & RAG]
|
| 525 |
+
|
| 526 |
+
DC -->|Deployed on| HF[HuggingFace Spaces<br/>Gradio 6.0]
|
| 527 |
+
|
| 528 |
+
PubMed -->|Results| DC
|
| 529 |
+
ArXiv -->|Results| DC
|
| 530 |
+
BioRxiv -->|Results| DC
|
| 531 |
+
Claude -->|Responses| DC
|
| 532 |
+
Modal -->|Output| DC
|
| 533 |
+
Chroma -->|Context| DC
|
| 534 |
+
|
| 535 |
+
DC -->|Research report| User
|
| 536 |
+
|
| 537 |
+
style User fill:#e1f5e1
|
| 538 |
+
style DC fill:#ffe6e6
|
| 539 |
+
style PubMed fill:#e6f3ff
|
| 540 |
+
style ArXiv fill:#e6f3ff
|
| 541 |
+
style BioRxiv fill:#e6f3ff
|
| 542 |
+
style Claude fill:#ffd6d6
|
| 543 |
+
style Modal fill:#f0f0f0
|
| 544 |
+
style Chroma fill:#ffe6f0
|
| 545 |
+
style HF fill:#d4edda
|
| 546 |
+
```
|
| 547 |
+
|
| 548 |
+
## 15. Workflow Timeline (Simplified)
|
| 549 |
+
|
| 550 |
+
```mermaid
|
| 551 |
+
gantt
|
| 552 |
+
title DeepCritical Magentic Workflow - Typical Execution
|
| 553 |
+
dateFormat mm:ss
|
| 554 |
+
axisFormat %M:%S
|
| 555 |
+
|
| 556 |
+
section Manager Planning
|
| 557 |
+
Initial planning :p1, 00:00, 10s
|
| 558 |
+
|
| 559 |
+
section Hypothesis Agent
|
| 560 |
+
Generate hypotheses :h1, after p1, 30s
|
| 561 |
+
Manager assessment :h2, after h1, 5s
|
| 562 |
+
|
| 563 |
+
section Search Agent
|
| 564 |
+
Search hypothesis 1 :s1, after h2, 20s
|
| 565 |
+
Search hypothesis 2 :s2, after s1, 20s
|
| 566 |
+
Search hypothesis 3 :s3, after s2, 20s
|
| 567 |
+
RAG processing :s4, after s3, 15s
|
| 568 |
+
Manager assessment :s5, after s4, 5s
|
| 569 |
+
|
| 570 |
+
section Analysis Agent
|
| 571 |
+
Evidence extraction :a1, after s5, 15s
|
| 572 |
+
Code generation :a2, after a1, 20s
|
| 573 |
+
Code execution :a3, after a2, 25s
|
| 574 |
+
Synthesis :a4, after a3, 20s
|
| 575 |
+
Manager assessment :a5, after a4, 5s
|
| 576 |
+
|
| 577 |
+
section Report Agent
|
| 578 |
+
Report assembly :r1, after a5, 30s
|
| 579 |
+
Visualization :r2, after r1, 15s
|
| 580 |
+
Formatting :r3, after r2, 10s
|
| 581 |
+
|
| 582 |
+
section Manager Synthesis
|
| 583 |
+
Final synthesis :f1, after r3, 10s
|
| 584 |
+
```
|
| 585 |
+
|
| 586 |
+
---
|
| 587 |
+
|
| 588 |
+
## Key Differences from Original Design
|
| 589 |
+
|
| 590 |
+
| Aspect | Original (Judge-in-Loop) | New (Magentic) |
|
| 591 |
+
|--------|-------------------------|----------------|
|
| 592 |
+
| **Control Flow** | Fixed sequential phases | Dynamic agent selection |
|
| 593 |
+
| **Quality Control** | Separate Judge Agent | Manager assessment built-in |
|
| 594 |
+
| **Retry Logic** | Phase-level with feedback | Agent-level with adaptation |
|
| 595 |
+
| **Flexibility** | Rigid 4-phase pipeline | Adaptive workflow |
|
| 596 |
+
| **Complexity** | 5 agents (including Judge) | 4 agents (no Judge) |
|
| 597 |
+
| **Progress Tracking** | Manual state management | Built-in round/stall detection |
|
| 598 |
+
| **Agent Coordination** | Sequential handoff | Manager-driven dynamic selection |
|
| 599 |
+
| **Error Recovery** | Retry same phase | Try different agent or replan |
|
| 600 |
+
|
| 601 |
+
---
|
| 602 |
+
|
| 603 |
+
## Simplified Design Principles
|
| 604 |
+
|
| 605 |
+
1. **Manager is Intelligent**: LLM-powered manager handles planning, selection, and quality assessment
|
| 606 |
+
2. **No Separate Judge**: Manager's assessment phase replaces dedicated Judge Agent
|
| 607 |
+
3. **Dynamic Workflow**: Agents can be called multiple times in any order based on need
|
| 608 |
+
4. **Built-in Safety**: max_round_count (15) and max_stall_count (3) prevent infinite loops
|
| 609 |
+
5. **Event-Driven UI**: Real-time streaming updates to Gradio interface
|
| 610 |
+
6. **MCP-Powered Tools**: All external capabilities via Model Context Protocol
|
| 611 |
+
7. **Shared Context**: Centralized state accessible to all agents
|
| 612 |
+
8. **Progress Awareness**: Manager tracks what's been done and what's needed
|
| 613 |
+
|
| 614 |
+
---
|
| 615 |
+
|
| 616 |
+
## Legend
|
| 617 |
+
|
| 618 |
+
- 🔴 **Red/Pink**: Manager, orchestration, decision-making
|
| 619 |
+
- 🟡 **Yellow/Orange**: Specialist agents, processing
|
| 620 |
+
- 🔵 **Blue**: Data, tools, MCP services
|
| 621 |
+
- 🟣 **Purple/Pink**: Storage, databases, state
|
| 622 |
+
- 🟢 **Green**: User interactions, final outputs
|
| 623 |
+
- ⚪ **Gray**: External services, APIs
|
| 624 |
+
|
| 625 |
+
---
|
| 626 |
+
|
| 627 |
+
## Implementation Highlights
|
| 628 |
+
|
| 629 |
+
**Simple 4-Agent Setup:**
|
| 630 |
+
```python
|
| 631 |
+
workflow = (
|
| 632 |
+
MagenticBuilder()
|
| 633 |
+
.participants(
|
| 634 |
+
hypothesis=HypothesisAgent(tools=[background_tool]),
|
| 635 |
+
search=SearchAgent(tools=[web_search, rag_tool]),
|
| 636 |
+
analysis=AnalysisAgent(tools=[code_execution]),
|
| 637 |
+
report=ReportAgent(tools=[code_execution, visualization])
|
| 638 |
+
)
|
| 639 |
+
.with_standard_manager(
|
| 640 |
+
chat_client=AnthropicClient(model="claude-sonnet-4"),
|
| 641 |
+
max_round_count=15, # Prevent infinite loops
|
| 642 |
+
max_stall_count=3 # Detect stuck workflows
|
| 643 |
+
)
|
| 644 |
+
.build()
|
| 645 |
+
)
|
| 646 |
+
```
|
| 647 |
+
|
| 648 |
+
**Manager handles quality assessment in its instructions:**
|
| 649 |
+
- Checks hypothesis quality (testable, novel, clear)
|
| 650 |
+
- Validates search results (relevant, authoritative, recent)
|
| 651 |
+
- Assesses analysis soundness (methodology, evidence, conclusions)
|
| 652 |
+
- Ensures report completeness (all sections, proper citations)
|
| 653 |
+
|
| 654 |
+
No separate Judge Agent needed - manager does it all!
|
| 655 |
+
|
| 656 |
+
---
|
| 657 |
+
|
| 658 |
+
**Document Version**: 2.0 (Magentic Simplified)
|
| 659 |
+
**Last Updated**: 2025-11-24
|
| 660 |
+
**Architecture**: Microsoft Magentic Orchestration Pattern
|
| 661 |
+
**Agents**: 4 (Hypothesis, Search, Analysis, Report) + 1 Manager
|
| 662 |
+
**License**: MIT
|
docs/configuration/CONFIGURATION.md
ADDED
|
@@ -0,0 +1,743 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Configuration Guide
|
| 2 |
+
|
| 3 |
+
## Overview
|
| 4 |
+
|
| 5 |
+
DeepCritical uses **Pydantic Settings** for centralized configuration management. All settings are defined in the `Settings` class in `src/utils/config.py` and can be configured via environment variables or a `.env` file.
|
| 6 |
+
|
| 7 |
+
The configuration system provides:
|
| 8 |
+
|
| 9 |
+
- **Type Safety**: Strongly-typed fields with Pydantic validation
|
| 10 |
+
- **Environment File Support**: Automatically loads from `.env` file (if present)
|
| 11 |
+
- **Case-Insensitive**: Environment variables are case-insensitive
|
| 12 |
+
- **Singleton Pattern**: Global `settings` instance for easy access throughout the codebase
|
| 13 |
+
- **Validation**: Automatic validation on load with helpful error messages
|
| 14 |
+
|
| 15 |
+
## Quick Start
|
| 16 |
+
|
| 17 |
+
1. Create a `.env` file in the project root
|
| 18 |
+
2. Set at least one LLM API key (`OPENAI_API_KEY`, `ANTHROPIC_API_KEY`, or `HF_TOKEN`)
|
| 19 |
+
3. Optionally configure other services as needed
|
| 20 |
+
4. The application will automatically load and validate your configuration
|
| 21 |
+
|
| 22 |
+
## Configuration System Architecture
|
| 23 |
+
|
| 24 |
+
### Settings Class
|
| 25 |
+
|
| 26 |
+
The `Settings` class extends `BaseSettings` from `pydantic_settings` and defines all application configuration:
|
| 27 |
+
|
| 28 |
+
```13:21:src/utils/config.py
|
| 29 |
+
class Settings(BaseSettings):
|
| 30 |
+
"""Strongly-typed application settings."""
|
| 31 |
+
|
| 32 |
+
model_config = SettingsConfigDict(
|
| 33 |
+
env_file=".env",
|
| 34 |
+
env_file_encoding="utf-8",
|
| 35 |
+
case_sensitive=False,
|
| 36 |
+
extra="ignore",
|
| 37 |
+
)
|
| 38 |
+
```
|
| 39 |
+
|
| 40 |
+
### Singleton Instance
|
| 41 |
+
|
| 42 |
+
A global `settings` instance is available for import:
|
| 43 |
+
|
| 44 |
+
```234:235:src/utils/config.py
|
| 45 |
+
# Singleton for easy import
|
| 46 |
+
settings = get_settings()
|
| 47 |
+
```
|
| 48 |
+
|
| 49 |
+
### Usage Pattern
|
| 50 |
+
|
| 51 |
+
Access configuration throughout the codebase:
|
| 52 |
+
|
| 53 |
+
```python
|
| 54 |
+
from src.utils.config import settings
|
| 55 |
+
|
| 56 |
+
# Check if API keys are available
|
| 57 |
+
if settings.has_openai_key:
|
| 58 |
+
# Use OpenAI
|
| 59 |
+
pass
|
| 60 |
+
|
| 61 |
+
# Access configuration values
|
| 62 |
+
max_iterations = settings.max_iterations
|
| 63 |
+
web_search_provider = settings.web_search_provider
|
| 64 |
+
```
|
| 65 |
+
|
| 66 |
+
## Required Configuration
|
| 67 |
+
|
| 68 |
+
### LLM Provider
|
| 69 |
+
|
| 70 |
+
You must configure at least one LLM provider. The system supports:
|
| 71 |
+
|
| 72 |
+
- **OpenAI**: Requires `OPENAI_API_KEY`
|
| 73 |
+
- **Anthropic**: Requires `ANTHROPIC_API_KEY`
|
| 74 |
+
- **HuggingFace**: Optional `HF_TOKEN` or `HUGGINGFACE_API_KEY` (can work without key for public models)
|
| 75 |
+
|
| 76 |
+
#### OpenAI Configuration
|
| 77 |
+
|
| 78 |
+
```bash
|
| 79 |
+
LLM_PROVIDER=openai
|
| 80 |
+
OPENAI_API_KEY=your_openai_api_key_here
|
| 81 |
+
OPENAI_MODEL=gpt-5.1
|
| 82 |
+
```
|
| 83 |
+
|
| 84 |
+
The default model is defined in the `Settings` class:
|
| 85 |
+
|
| 86 |
+
```29:29:src/utils/config.py
|
| 87 |
+
openai_model: str = Field(default="gpt-5.1", description="OpenAI model name")
|
| 88 |
+
```
|
| 89 |
+
|
| 90 |
+
#### Anthropic Configuration
|
| 91 |
+
|
| 92 |
+
```bash
|
| 93 |
+
LLM_PROVIDER=anthropic
|
| 94 |
+
ANTHROPIC_API_KEY=your_anthropic_api_key_here
|
| 95 |
+
ANTHROPIC_MODEL=claude-sonnet-4-5-20250929
|
| 96 |
+
```
|
| 97 |
+
|
| 98 |
+
The default model is defined in the `Settings` class:
|
| 99 |
+
|
| 100 |
+
```30:32:src/utils/config.py
|
| 101 |
+
anthropic_model: str = Field(
|
| 102 |
+
default="claude-sonnet-4-5-20250929", description="Anthropic model"
|
| 103 |
+
)
|
| 104 |
+
```
|
| 105 |
+
|
| 106 |
+
#### HuggingFace Configuration
|
| 107 |
+
|
| 108 |
+
HuggingFace can work without an API key for public models, but an API key provides higher rate limits:
|
| 109 |
+
|
| 110 |
+
```bash
|
| 111 |
+
# Option 1: Using HF_TOKEN (preferred)
|
| 112 |
+
HF_TOKEN=your_huggingface_token_here
|
| 113 |
+
|
| 114 |
+
# Option 2: Using HUGGINGFACE_API_KEY (alternative)
|
| 115 |
+
HUGGINGFACE_API_KEY=your_huggingface_api_key_here
|
| 116 |
+
|
| 117 |
+
# Default model
|
| 118 |
+
HUGGINGFACE_MODEL=meta-llama/Llama-3.1-8B-Instruct
|
| 119 |
+
```
|
| 120 |
+
|
| 121 |
+
The HuggingFace token can be set via either environment variable:
|
| 122 |
+
|
| 123 |
+
```33:35:src/utils/config.py
|
| 124 |
+
hf_token: str | None = Field(
|
| 125 |
+
default=None, alias="HF_TOKEN", description="HuggingFace API token"
|
| 126 |
+
)
|
| 127 |
+
```
|
| 128 |
+
|
| 129 |
+
```57:59:src/utils/config.py
|
| 130 |
+
huggingface_api_key: str | None = Field(
|
| 131 |
+
default=None, description="HuggingFace API token (HF_TOKEN or HUGGINGFACE_API_KEY)"
|
| 132 |
+
)
|
| 133 |
+
```
|
| 134 |
+
|
| 135 |
+
## Optional Configuration
|
| 136 |
+
|
| 137 |
+
### Embedding Configuration
|
| 138 |
+
|
| 139 |
+
DeepCritical supports multiple embedding providers for semantic search and RAG:
|
| 140 |
+
|
| 141 |
+
```bash
|
| 142 |
+
# Embedding Provider: "openai", "local", or "huggingface"
|
| 143 |
+
EMBEDDING_PROVIDER=local
|
| 144 |
+
|
| 145 |
+
# OpenAI Embedding Model (used by LlamaIndex RAG)
|
| 146 |
+
OPENAI_EMBEDDING_MODEL=text-embedding-3-small
|
| 147 |
+
|
| 148 |
+
# Local Embedding Model (sentence-transformers, used by EmbeddingService)
|
| 149 |
+
LOCAL_EMBEDDING_MODEL=all-MiniLM-L6-v2
|
| 150 |
+
|
| 151 |
+
# HuggingFace Embedding Model
|
| 152 |
+
HUGGINGFACE_EMBEDDING_MODEL=sentence-transformers/all-MiniLM-L6-v2
|
| 153 |
+
```
|
| 154 |
+
|
| 155 |
+
The embedding provider configuration:
|
| 156 |
+
|
| 157 |
+
```47:50:src/utils/config.py
|
| 158 |
+
embedding_provider: Literal["openai", "local", "huggingface"] = Field(
|
| 159 |
+
default="local",
|
| 160 |
+
description="Embedding provider to use",
|
| 161 |
+
)
|
| 162 |
+
```
|
| 163 |
+
|
| 164 |
+
**Note**: OpenAI embeddings require `OPENAI_API_KEY`. The local provider (default) uses sentence-transformers and requires no API key.
|
| 165 |
+
|
| 166 |
+
### Web Search Configuration
|
| 167 |
+
|
| 168 |
+
DeepCritical supports multiple web search providers:
|
| 169 |
+
|
| 170 |
+
```bash
|
| 171 |
+
# Web Search Provider: "serper", "searchxng", "brave", "tavily", or "duckduckgo"
|
| 172 |
+
# Default: "duckduckgo" (no API key required)
|
| 173 |
+
WEB_SEARCH_PROVIDER=duckduckgo
|
| 174 |
+
|
| 175 |
+
# Serper API Key (for Google search via Serper)
|
| 176 |
+
SERPER_API_KEY=your_serper_api_key_here
|
| 177 |
+
|
| 178 |
+
# SearchXNG Host URL (for self-hosted search)
|
| 179 |
+
SEARCHXNG_HOST=http://localhost:8080
|
| 180 |
+
|
| 181 |
+
# Brave Search API Key
|
| 182 |
+
BRAVE_API_KEY=your_brave_api_key_here
|
| 183 |
+
|
| 184 |
+
# Tavily API Key
|
| 185 |
+
TAVILY_API_KEY=your_tavily_api_key_here
|
| 186 |
+
```
|
| 187 |
+
|
| 188 |
+
The web search provider configuration:
|
| 189 |
+
|
| 190 |
+
```71:74:src/utils/config.py
|
| 191 |
+
web_search_provider: Literal["serper", "searchxng", "brave", "tavily", "duckduckgo"] = Field(
|
| 192 |
+
default="duckduckgo",
|
| 193 |
+
description="Web search provider to use",
|
| 194 |
+
)
|
| 195 |
+
```
|
| 196 |
+
|
| 197 |
+
**Note**: DuckDuckGo is the default and requires no API key, making it ideal for development and testing.
|
| 198 |
+
|
| 199 |
+
### PubMed Configuration
|
| 200 |
+
|
| 201 |
+
PubMed search supports optional NCBI API key for higher rate limits:
|
| 202 |
+
|
| 203 |
+
```bash
|
| 204 |
+
# NCBI API Key (optional, for higher rate limits: 10 req/sec vs 3 req/sec)
|
| 205 |
+
NCBI_API_KEY=your_ncbi_api_key_here
|
| 206 |
+
```
|
| 207 |
+
|
| 208 |
+
The PubMed tool uses this configuration:
|
| 209 |
+
|
| 210 |
+
```22:29:src/tools/pubmed.py
|
| 211 |
+
def __init__(self, api_key: str | None = None) -> None:
|
| 212 |
+
self.api_key = api_key or settings.ncbi_api_key
|
| 213 |
+
# Ignore placeholder values from .env.example
|
| 214 |
+
if self.api_key == "your-ncbi-key-here":
|
| 215 |
+
self.api_key = None
|
| 216 |
+
|
| 217 |
+
# Use shared rate limiter
|
| 218 |
+
self._limiter = get_pubmed_limiter(self.api_key)
|
| 219 |
+
```
|
| 220 |
+
|
| 221 |
+
### Agent Configuration
|
| 222 |
+
|
| 223 |
+
Control agent behavior and research loop execution:
|
| 224 |
+
|
| 225 |
+
```bash
|
| 226 |
+
# Maximum iterations per research loop (1-50, default: 10)
|
| 227 |
+
MAX_ITERATIONS=10
|
| 228 |
+
|
| 229 |
+
# Search timeout in seconds
|
| 230 |
+
SEARCH_TIMEOUT=30
|
| 231 |
+
|
| 232 |
+
# Use graph-based execution for research flows
|
| 233 |
+
USE_GRAPH_EXECUTION=false
|
| 234 |
+
```
|
| 235 |
+
|
| 236 |
+
The agent configuration fields:
|
| 237 |
+
|
| 238 |
+
```80:85:src/utils/config.py
|
| 239 |
+
# Agent Configuration
|
| 240 |
+
max_iterations: int = Field(default=10, ge=1, le=50)
|
| 241 |
+
search_timeout: int = Field(default=30, description="Seconds to wait for search")
|
| 242 |
+
use_graph_execution: bool = Field(
|
| 243 |
+
default=False, description="Use graph-based execution for research flows"
|
| 244 |
+
)
|
| 245 |
+
```
|
| 246 |
+
|
| 247 |
+
### Budget & Rate Limiting Configuration
|
| 248 |
+
|
| 249 |
+
Control resource limits for research loops:
|
| 250 |
+
|
| 251 |
+
```bash
|
| 252 |
+
# Default token budget per research loop (1000-1000000, default: 100000)
|
| 253 |
+
DEFAULT_TOKEN_LIMIT=100000
|
| 254 |
+
|
| 255 |
+
# Default time limit per research loop in minutes (1-120, default: 10)
|
| 256 |
+
DEFAULT_TIME_LIMIT_MINUTES=10
|
| 257 |
+
|
| 258 |
+
# Default iterations limit per research loop (1-50, default: 10)
|
| 259 |
+
DEFAULT_ITERATIONS_LIMIT=10
|
| 260 |
+
```
|
| 261 |
+
|
| 262 |
+
The budget configuration with validation:
|
| 263 |
+
|
| 264 |
+
```87:105:src/utils/config.py
|
| 265 |
+
# Budget & Rate Limiting Configuration
|
| 266 |
+
default_token_limit: int = Field(
|
| 267 |
+
default=100000,
|
| 268 |
+
ge=1000,
|
| 269 |
+
le=1000000,
|
| 270 |
+
description="Default token budget per research loop",
|
| 271 |
+
)
|
| 272 |
+
default_time_limit_minutes: int = Field(
|
| 273 |
+
default=10,
|
| 274 |
+
ge=1,
|
| 275 |
+
le=120,
|
| 276 |
+
description="Default time limit per research loop (minutes)",
|
| 277 |
+
)
|
| 278 |
+
default_iterations_limit: int = Field(
|
| 279 |
+
default=10,
|
| 280 |
+
ge=1,
|
| 281 |
+
le=50,
|
| 282 |
+
description="Default iterations limit per research loop",
|
| 283 |
+
)
|
| 284 |
+
```
|
| 285 |
+
|
| 286 |
+
### RAG Service Configuration
|
| 287 |
+
|
| 288 |
+
Configure the Retrieval-Augmented Generation service:
|
| 289 |
+
|
| 290 |
+
```bash
|
| 291 |
+
# ChromaDB collection name for RAG
|
| 292 |
+
RAG_COLLECTION_NAME=deepcritical_evidence
|
| 293 |
+
|
| 294 |
+
# Number of top results to retrieve from RAG (1-50, default: 5)
|
| 295 |
+
RAG_SIMILARITY_TOP_K=5
|
| 296 |
+
|
| 297 |
+
# Automatically ingest evidence into RAG
|
| 298 |
+
RAG_AUTO_INGEST=true
|
| 299 |
+
```
|
| 300 |
+
|
| 301 |
+
The RAG configuration:
|
| 302 |
+
|
| 303 |
+
```127:141:src/utils/config.py
|
| 304 |
+
# RAG Service Configuration
|
| 305 |
+
rag_collection_name: str = Field(
|
| 306 |
+
default="deepcritical_evidence",
|
| 307 |
+
description="ChromaDB collection name for RAG",
|
| 308 |
+
)
|
| 309 |
+
rag_similarity_top_k: int = Field(
|
| 310 |
+
default=5,
|
| 311 |
+
ge=1,
|
| 312 |
+
le=50,
|
| 313 |
+
description="Number of top results to retrieve from RAG",
|
| 314 |
+
)
|
| 315 |
+
rag_auto_ingest: bool = Field(
|
| 316 |
+
default=True,
|
| 317 |
+
description="Automatically ingest evidence into RAG",
|
| 318 |
+
)
|
| 319 |
+
```
|
| 320 |
+
|
| 321 |
+
### ChromaDB Configuration
|
| 322 |
+
|
| 323 |
+
Configure the vector database for embeddings and RAG:
|
| 324 |
+
|
| 325 |
+
```bash
|
| 326 |
+
# ChromaDB storage path
|
| 327 |
+
CHROMA_DB_PATH=./chroma_db
|
| 328 |
+
|
| 329 |
+
# Whether to persist ChromaDB to disk
|
| 330 |
+
CHROMA_DB_PERSIST=true
|
| 331 |
+
|
| 332 |
+
# ChromaDB server host (for remote ChromaDB, optional)
|
| 333 |
+
CHROMA_DB_HOST=localhost
|
| 334 |
+
|
| 335 |
+
# ChromaDB server port (for remote ChromaDB, optional)
|
| 336 |
+
CHROMA_DB_PORT=8000
|
| 337 |
+
```
|
| 338 |
+
|
| 339 |
+
The ChromaDB configuration:
|
| 340 |
+
|
| 341 |
+
```113:125:src/utils/config.py
|
| 342 |
+
chroma_db_path: str = Field(default="./chroma_db", description="ChromaDB storage path")
|
| 343 |
+
chroma_db_persist: bool = Field(
|
| 344 |
+
default=True,
|
| 345 |
+
description="Whether to persist ChromaDB to disk",
|
| 346 |
+
)
|
| 347 |
+
chroma_db_host: str | None = Field(
|
| 348 |
+
default=None,
|
| 349 |
+
description="ChromaDB server host (for remote ChromaDB)",
|
| 350 |
+
)
|
| 351 |
+
chroma_db_port: int | None = Field(
|
| 352 |
+
default=None,
|
| 353 |
+
description="ChromaDB server port (for remote ChromaDB)",
|
| 354 |
+
)
|
| 355 |
+
```
|
| 356 |
+
|
| 357 |
+
### External Services
|
| 358 |
+
|
| 359 |
+
#### Modal Configuration
|
| 360 |
+
|
| 361 |
+
Modal is used for secure sandbox execution of statistical analysis:
|
| 362 |
+
|
| 363 |
+
```bash
|
| 364 |
+
# Modal Token ID (for Modal sandbox execution)
|
| 365 |
+
MODAL_TOKEN_ID=your_modal_token_id_here
|
| 366 |
+
|
| 367 |
+
# Modal Token Secret
|
| 368 |
+
MODAL_TOKEN_SECRET=your_modal_token_secret_here
|
| 369 |
+
```
|
| 370 |
+
|
| 371 |
+
The Modal configuration:
|
| 372 |
+
|
| 373 |
+
```110:112:src/utils/config.py
|
| 374 |
+
# External Services
|
| 375 |
+
modal_token_id: str | None = Field(default=None, description="Modal token ID")
|
| 376 |
+
modal_token_secret: str | None = Field(default=None, description="Modal token secret")
|
| 377 |
+
```
|
| 378 |
+
|
| 379 |
+
### Logging Configuration
|
| 380 |
+
|
| 381 |
+
Configure structured logging:
|
| 382 |
+
|
| 383 |
+
```bash
|
| 384 |
+
# Log Level: "DEBUG", "INFO", "WARNING", or "ERROR"
|
| 385 |
+
LOG_LEVEL=INFO
|
| 386 |
+
```
|
| 387 |
+
|
| 388 |
+
The logging configuration:
|
| 389 |
+
|
| 390 |
+
```107:108:src/utils/config.py
|
| 391 |
+
# Logging
|
| 392 |
+
log_level: Literal["DEBUG", "INFO", "WARNING", "ERROR"] = "INFO"
|
| 393 |
+
```
|
| 394 |
+
|
| 395 |
+
Logging is configured via the `configure_logging()` function:
|
| 396 |
+
|
| 397 |
+
```212:231:src/utils/config.py
|
| 398 |
+
def configure_logging(settings: Settings) -> None:
|
| 399 |
+
"""Configure structured logging with the configured log level."""
|
| 400 |
+
# Set stdlib logging level from settings
|
| 401 |
+
logging.basicConfig(
|
| 402 |
+
level=getattr(logging, settings.log_level),
|
| 403 |
+
format="%(message)s",
|
| 404 |
+
)
|
| 405 |
+
|
| 406 |
+
structlog.configure(
|
| 407 |
+
processors=[
|
| 408 |
+
structlog.stdlib.filter_by_level,
|
| 409 |
+
structlog.stdlib.add_logger_name,
|
| 410 |
+
structlog.stdlib.add_log_level,
|
| 411 |
+
structlog.processors.TimeStamper(fmt="iso"),
|
| 412 |
+
structlog.processors.JSONRenderer(),
|
| 413 |
+
],
|
| 414 |
+
wrapper_class=structlog.stdlib.BoundLogger,
|
| 415 |
+
context_class=dict,
|
| 416 |
+
logger_factory=structlog.stdlib.LoggerFactory(),
|
| 417 |
+
)
|
| 418 |
+
```
|
| 419 |
+
|
| 420 |
+
## Configuration Properties
|
| 421 |
+
|
| 422 |
+
The `Settings` class provides helpful properties for checking configuration state:
|
| 423 |
+
|
| 424 |
+
### API Key Availability
|
| 425 |
+
|
| 426 |
+
Check which API keys are available:
|
| 427 |
+
|
| 428 |
+
```171:189:src/utils/config.py
|
| 429 |
+
@property
|
| 430 |
+
def has_openai_key(self) -> bool:
|
| 431 |
+
"""Check if OpenAI API key is available."""
|
| 432 |
+
return bool(self.openai_api_key)
|
| 433 |
+
|
| 434 |
+
@property
|
| 435 |
+
def has_anthropic_key(self) -> bool:
|
| 436 |
+
"""Check if Anthropic API key is available."""
|
| 437 |
+
return bool(self.anthropic_api_key)
|
| 438 |
+
|
| 439 |
+
@property
|
| 440 |
+
def has_huggingface_key(self) -> bool:
|
| 441 |
+
"""Check if HuggingFace API key is available."""
|
| 442 |
+
return bool(self.huggingface_api_key or self.hf_token)
|
| 443 |
+
|
| 444 |
+
@property
|
| 445 |
+
def has_any_llm_key(self) -> bool:
|
| 446 |
+
"""Check if any LLM API key is available."""
|
| 447 |
+
return self.has_openai_key or self.has_anthropic_key or self.has_huggingface_key
|
| 448 |
+
```
|
| 449 |
+
|
| 450 |
+
**Usage:**
|
| 451 |
+
|
| 452 |
+
```python
|
| 453 |
+
from src.utils.config import settings
|
| 454 |
+
|
| 455 |
+
# Check API key availability
|
| 456 |
+
if settings.has_openai_key:
|
| 457 |
+
# Use OpenAI
|
| 458 |
+
pass
|
| 459 |
+
|
| 460 |
+
if settings.has_anthropic_key:
|
| 461 |
+
# Use Anthropic
|
| 462 |
+
pass
|
| 463 |
+
|
| 464 |
+
if settings.has_huggingface_key:
|
| 465 |
+
# Use HuggingFace
|
| 466 |
+
pass
|
| 467 |
+
|
| 468 |
+
if settings.has_any_llm_key:
|
| 469 |
+
# At least one LLM is available
|
| 470 |
+
pass
|
| 471 |
+
```
|
| 472 |
+
|
| 473 |
+
### Service Availability
|
| 474 |
+
|
| 475 |
+
Check if external services are configured:
|
| 476 |
+
|
| 477 |
+
```143:146:src/utils/config.py
|
| 478 |
+
@property
|
| 479 |
+
def modal_available(self) -> bool:
|
| 480 |
+
"""Check if Modal credentials are configured."""
|
| 481 |
+
return bool(self.modal_token_id and self.modal_token_secret)
|
| 482 |
+
```
|
| 483 |
+
|
| 484 |
+
```191:204:src/utils/config.py
|
| 485 |
+
@property
|
| 486 |
+
def web_search_available(self) -> bool:
|
| 487 |
+
"""Check if web search is available (either no-key provider or API key present)."""
|
| 488 |
+
if self.web_search_provider == "duckduckgo":
|
| 489 |
+
return True # No API key required
|
| 490 |
+
if self.web_search_provider == "serper":
|
| 491 |
+
return bool(self.serper_api_key)
|
| 492 |
+
if self.web_search_provider == "searchxng":
|
| 493 |
+
return bool(self.searchxng_host)
|
| 494 |
+
if self.web_search_provider == "brave":
|
| 495 |
+
return bool(self.brave_api_key)
|
| 496 |
+
if self.web_search_provider == "tavily":
|
| 497 |
+
return bool(self.tavily_api_key)
|
| 498 |
+
return False
|
| 499 |
+
```
|
| 500 |
+
|
| 501 |
+
**Usage:**
|
| 502 |
+
|
| 503 |
+
```python
|
| 504 |
+
from src.utils.config import settings
|
| 505 |
+
|
| 506 |
+
# Check service availability
|
| 507 |
+
if settings.modal_available:
|
| 508 |
+
# Use Modal sandbox
|
| 509 |
+
pass
|
| 510 |
+
|
| 511 |
+
if settings.web_search_available:
|
| 512 |
+
# Web search is configured
|
| 513 |
+
pass
|
| 514 |
+
```
|
| 515 |
+
|
| 516 |
+
### API Key Retrieval
|
| 517 |
+
|
| 518 |
+
Get the API key for the configured provider:
|
| 519 |
+
|
| 520 |
+
```148:160:src/utils/config.py
|
| 521 |
+
def get_api_key(self) -> str:
|
| 522 |
+
"""Get the API key for the configured provider."""
|
| 523 |
+
if self.llm_provider == "openai":
|
| 524 |
+
if not self.openai_api_key:
|
| 525 |
+
raise ConfigurationError("OPENAI_API_KEY not set")
|
| 526 |
+
return self.openai_api_key
|
| 527 |
+
|
| 528 |
+
if self.llm_provider == "anthropic":
|
| 529 |
+
if not self.anthropic_api_key:
|
| 530 |
+
raise ConfigurationError("ANTHROPIC_API_KEY not set")
|
| 531 |
+
return self.anthropic_api_key
|
| 532 |
+
|
| 533 |
+
raise ConfigurationError(f"Unknown LLM provider: {self.llm_provider}")
|
| 534 |
+
```
|
| 535 |
+
|
| 536 |
+
For OpenAI-specific operations (e.g., Magentic mode):
|
| 537 |
+
|
| 538 |
+
```162:169:src/utils/config.py
|
| 539 |
+
def get_openai_api_key(self) -> str:
|
| 540 |
+
"""Get OpenAI API key (required for Magentic function calling)."""
|
| 541 |
+
if not self.openai_api_key:
|
| 542 |
+
raise ConfigurationError(
|
| 543 |
+
"OPENAI_API_KEY not set. Magentic mode requires OpenAI for function calling. "
|
| 544 |
+
"Use mode='simple' for other providers."
|
| 545 |
+
)
|
| 546 |
+
return self.openai_api_key
|
| 547 |
+
```
|
| 548 |
+
|
| 549 |
+
## Configuration Usage in Codebase
|
| 550 |
+
|
| 551 |
+
The configuration system is used throughout the codebase:
|
| 552 |
+
|
| 553 |
+
### LLM Factory
|
| 554 |
+
|
| 555 |
+
The LLM factory uses settings to create appropriate models:
|
| 556 |
+
|
| 557 |
+
```129:144:src/utils/llm_factory.py
|
| 558 |
+
if settings.llm_provider == "huggingface":
|
| 559 |
+
model_name = settings.huggingface_model or "meta-llama/Llama-3.1-8B-Instruct"
|
| 560 |
+
hf_provider = HuggingFaceProvider(api_key=settings.hf_token)
|
| 561 |
+
return HuggingFaceModel(model_name, provider=hf_provider)
|
| 562 |
+
|
| 563 |
+
if settings.llm_provider == "openai":
|
| 564 |
+
if not settings.openai_api_key:
|
| 565 |
+
raise ConfigurationError("OPENAI_API_KEY not set for pydantic-ai")
|
| 566 |
+
provider = OpenAIProvider(api_key=settings.openai_api_key)
|
| 567 |
+
return OpenAIModel(settings.openai_model, provider=provider)
|
| 568 |
+
|
| 569 |
+
if settings.llm_provider == "anthropic":
|
| 570 |
+
if not settings.anthropic_api_key:
|
| 571 |
+
raise ConfigurationError("ANTHROPIC_API_KEY not set for pydantic-ai")
|
| 572 |
+
anthropic_provider = AnthropicProvider(api_key=settings.anthropic_api_key)
|
| 573 |
+
return AnthropicModel(settings.anthropic_model, provider=anthropic_provider)
|
| 574 |
+
```
|
| 575 |
+
|
| 576 |
+
### Embedding Service
|
| 577 |
+
|
| 578 |
+
The embedding service uses local embedding model configuration:
|
| 579 |
+
|
| 580 |
+
```29:31:src/services/embeddings.py
|
| 581 |
+
def __init__(self, model_name: str | None = None):
|
| 582 |
+
self._model_name = model_name or settings.local_embedding_model
|
| 583 |
+
self._model = SentenceTransformer(self._model_name)
|
| 584 |
+
```
|
| 585 |
+
|
| 586 |
+
### Orchestrator Factory
|
| 587 |
+
|
| 588 |
+
The orchestrator factory uses settings to determine mode:
|
| 589 |
+
|
| 590 |
+
```69:80:src/orchestrator_factory.py
|
| 591 |
+
def _determine_mode(explicit_mode: str | None) -> str:
|
| 592 |
+
"""Determine which mode to use."""
|
| 593 |
+
if explicit_mode:
|
| 594 |
+
if explicit_mode in ("magentic", "advanced"):
|
| 595 |
+
return "advanced"
|
| 596 |
+
return "simple"
|
| 597 |
+
|
| 598 |
+
# Auto-detect: advanced if paid API key available
|
| 599 |
+
if settings.has_openai_key:
|
| 600 |
+
return "advanced"
|
| 601 |
+
|
| 602 |
+
return "simple"
|
| 603 |
+
```
|
| 604 |
+
|
| 605 |
+
## Environment Variables Reference
|
| 606 |
+
|
| 607 |
+
### Required (at least one LLM)
|
| 608 |
+
|
| 609 |
+
- `OPENAI_API_KEY` - OpenAI API key (required for OpenAI provider)
|
| 610 |
+
- `ANTHROPIC_API_KEY` - Anthropic API key (required for Anthropic provider)
|
| 611 |
+
- `HF_TOKEN` or `HUGGINGFACE_API_KEY` - HuggingFace API token (optional, can work without for public models)
|
| 612 |
+
|
| 613 |
+
#### LLM Configuration Variables
|
| 614 |
+
|
| 615 |
+
- `LLM_PROVIDER` - Provider to use: `"openai"`, `"anthropic"`, or `"huggingface"` (default: `"huggingface"`)
|
| 616 |
+
- `OPENAI_MODEL` - OpenAI model name (default: `"gpt-5.1"`)
|
| 617 |
+
- `ANTHROPIC_MODEL` - Anthropic model name (default: `"claude-sonnet-4-5-20250929"`)
|
| 618 |
+
- `HUGGINGFACE_MODEL` - HuggingFace model ID (default: `"meta-llama/Llama-3.1-8B-Instruct"`)
|
| 619 |
+
|
| 620 |
+
#### Embedding Configuration Variables
|
| 621 |
+
|
| 622 |
+
- `EMBEDDING_PROVIDER` - Provider: `"openai"`, `"local"`, or `"huggingface"` (default: `"local"`)
|
| 623 |
+
- `OPENAI_EMBEDDING_MODEL` - OpenAI embedding model (default: `"text-embedding-3-small"`)
|
| 624 |
+
- `LOCAL_EMBEDDING_MODEL` - Local sentence-transformers model (default: `"all-MiniLM-L6-v2"`)
|
| 625 |
+
- `HUGGINGFACE_EMBEDDING_MODEL` - HuggingFace embedding model (default: `"sentence-transformers/all-MiniLM-L6-v2"`)
|
| 626 |
+
|
| 627 |
+
#### Web Search Configuration Variables
|
| 628 |
+
|
| 629 |
+
- `WEB_SEARCH_PROVIDER` - Provider: `"serper"`, `"searchxng"`, `"brave"`, `"tavily"`, or `"duckduckgo"` (default: `"duckduckgo"`)
|
| 630 |
+
- `SERPER_API_KEY` - Serper API key (required for Serper provider)
|
| 631 |
+
- `SEARCHXNG_HOST` - SearchXNG host URL (required for SearchXNG provider)
|
| 632 |
+
- `BRAVE_API_KEY` - Brave Search API key (required for Brave provider)
|
| 633 |
+
- `TAVILY_API_KEY` - Tavily API key (required for Tavily provider)
|
| 634 |
+
|
| 635 |
+
#### PubMed Configuration Variables
|
| 636 |
+
|
| 637 |
+
- `NCBI_API_KEY` - NCBI API key (optional, increases rate limit from 3 to 10 req/sec)
|
| 638 |
+
|
| 639 |
+
#### Agent Configuration Variables
|
| 640 |
+
|
| 641 |
+
- `MAX_ITERATIONS` - Maximum iterations per research loop (1-50, default: `10`)
|
| 642 |
+
- `SEARCH_TIMEOUT` - Search timeout in seconds (default: `30`)
|
| 643 |
+
- `USE_GRAPH_EXECUTION` - Use graph-based execution (default: `false`)
|
| 644 |
+
|
| 645 |
+
#### Budget Configuration Variables
|
| 646 |
+
|
| 647 |
+
- `DEFAULT_TOKEN_LIMIT` - Default token budget per research loop (1000-1000000, default: `100000`)
|
| 648 |
+
- `DEFAULT_TIME_LIMIT_MINUTES` - Default time limit in minutes (1-120, default: `10`)
|
| 649 |
+
- `DEFAULT_ITERATIONS_LIMIT` - Default iterations limit (1-50, default: `10`)
|
| 650 |
+
|
| 651 |
+
#### RAG Configuration Variables
|
| 652 |
+
|
| 653 |
+
- `RAG_COLLECTION_NAME` - ChromaDB collection name (default: `"deepcritical_evidence"`)
|
| 654 |
+
- `RAG_SIMILARITY_TOP_K` - Number of top results to retrieve (1-50, default: `5`)
|
| 655 |
+
- `RAG_AUTO_INGEST` - Automatically ingest evidence into RAG (default: `true`)
|
| 656 |
+
|
| 657 |
+
#### ChromaDB Configuration Variables
|
| 658 |
+
|
| 659 |
+
- `CHROMA_DB_PATH` - ChromaDB storage path (default: `"./chroma_db"`)
|
| 660 |
+
- `CHROMA_DB_PERSIST` - Whether to persist ChromaDB to disk (default: `true`)
|
| 661 |
+
- `CHROMA_DB_HOST` - ChromaDB server host (optional, for remote ChromaDB)
|
| 662 |
+
- `CHROMA_DB_PORT` - ChromaDB server port (optional, for remote ChromaDB)
|
| 663 |
+
|
| 664 |
+
#### External Services Variables
|
| 665 |
+
|
| 666 |
+
- `MODAL_TOKEN_ID` - Modal token ID (optional, for Modal sandbox execution)
|
| 667 |
+
- `MODAL_TOKEN_SECRET` - Modal token secret (optional, for Modal sandbox execution)
|
| 668 |
+
|
| 669 |
+
#### Logging Configuration Variables
|
| 670 |
+
|
| 671 |
+
- `LOG_LEVEL` - Log level: `"DEBUG"`, `"INFO"`, `"WARNING"`, or `"ERROR"` (default: `"INFO"`)
|
| 672 |
+
|
| 673 |
+
## Validation
|
| 674 |
+
|
| 675 |
+
Settings are validated on load using Pydantic validation:
|
| 676 |
+
|
| 677 |
+
- **Type Checking**: All fields are strongly typed
|
| 678 |
+
- **Range Validation**: Numeric fields have min/max constraints (e.g., `ge=1, le=50` for `max_iterations`)
|
| 679 |
+
- **Literal Validation**: Enum fields only accept specific values (e.g., `Literal["openai", "anthropic", "huggingface"]`)
|
| 680 |
+
- **Required Fields**: API keys are checked when accessed via `get_api_key()` or `get_openai_api_key()`
|
| 681 |
+
|
| 682 |
+
### Validation Examples
|
| 683 |
+
|
| 684 |
+
The `max_iterations` field has range validation:
|
| 685 |
+
|
| 686 |
+
```81:81:src/utils/config.py
|
| 687 |
+
max_iterations: int = Field(default=10, ge=1, le=50)
|
| 688 |
+
```
|
| 689 |
+
|
| 690 |
+
The `llm_provider` field has literal validation:
|
| 691 |
+
|
| 692 |
+
```26:28:src/utils/config.py
|
| 693 |
+
llm_provider: Literal["openai", "anthropic", "huggingface"] = Field(
|
| 694 |
+
default="openai", description="Which LLM provider to use"
|
| 695 |
+
)
|
| 696 |
+
```
|
| 697 |
+
|
| 698 |
+
## Error Handling
|
| 699 |
+
|
| 700 |
+
Configuration errors raise `ConfigurationError` from `src/utils/exceptions.py`:
|
| 701 |
+
|
| 702 |
+
```22:25:src/utils/exceptions.py
|
| 703 |
+
class ConfigurationError(DeepCriticalError):
|
| 704 |
+
"""Raised when configuration is invalid."""
|
| 705 |
+
|
| 706 |
+
pass
|
| 707 |
+
```
|
| 708 |
+
|
| 709 |
+
### Error Handling Example
|
| 710 |
+
|
| 711 |
+
```python
|
| 712 |
+
from src.utils.config import settings
|
| 713 |
+
from src.utils.exceptions import ConfigurationError
|
| 714 |
+
|
| 715 |
+
try:
|
| 716 |
+
api_key = settings.get_api_key()
|
| 717 |
+
except ConfigurationError as e:
|
| 718 |
+
print(f"Configuration error: {e}")
|
| 719 |
+
```
|
| 720 |
+
|
| 721 |
+
### Common Configuration Errors
|
| 722 |
+
|
| 723 |
+
1. **Missing API Key**: When `get_api_key()` is called but the required API key is not set
|
| 724 |
+
2. **Invalid Provider**: When `llm_provider` is set to an unsupported value
|
| 725 |
+
3. **Out of Range**: When numeric values exceed their min/max constraints
|
| 726 |
+
4. **Invalid Literal**: When enum fields receive unsupported values
|
| 727 |
+
|
| 728 |
+
## Configuration Best Practices
|
| 729 |
+
|
| 730 |
+
1. **Use `.env` File**: Store sensitive keys in `.env` file (add to `.gitignore`)
|
| 731 |
+
2. **Check Availability**: Use properties like `has_openai_key` before accessing API keys
|
| 732 |
+
3. **Handle Errors**: Always catch `ConfigurationError` when calling `get_api_key()`
|
| 733 |
+
4. **Validate Early**: Configuration is validated on import, so errors surface immediately
|
| 734 |
+
5. **Use Defaults**: Leverage sensible defaults for optional configuration
|
| 735 |
+
|
| 736 |
+
## Future Enhancements
|
| 737 |
+
|
| 738 |
+
The following configurations are planned for future phases:
|
| 739 |
+
|
| 740 |
+
1. **Additional LLM Providers**: DeepSeek, OpenRouter, Gemini, Perplexity, Azure OpenAI, Local models
|
| 741 |
+
2. **Model Selection**: Reasoning/main/fast model configuration
|
| 742 |
+
3. **Service Integration**: Additional service integrations and configurations
|
| 743 |
+
|
docs/configuration/index.md
CHANGED
|
@@ -25,9 +25,17 @@ The configuration system provides:
|
|
| 25 |
|
| 26 |
The [`Settings`][settings-class] class extends `BaseSettings` from `pydantic_settings` and defines all application configuration:
|
| 27 |
|
| 28 |
-
|
| 29 |
-
|
| 30 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 31 |
|
| 32 |
[View source](https://github.com/DeepCritical/GradioDemo/blob/main/src/utils/config.py#L13-L21)
|
| 33 |
|
|
@@ -35,9 +43,10 @@ The [`Settings`][settings-class] class extends `BaseSettings` from `pydantic_set
|
|
| 35 |
|
| 36 |
A global `settings` instance is available for import:
|
| 37 |
|
| 38 |
-
|
| 39 |
-
|
| 40 |
-
|
|
|
|
| 41 |
|
| 42 |
[View source](https://github.com/DeepCritical/GradioDemo/blob/main/src/utils/config.py#L234-L235)
|
| 43 |
|
|
@@ -78,9 +87,9 @@ OPENAI_MODEL=gpt-5.1
|
|
| 78 |
|
| 79 |
The default model is defined in the `Settings` class:
|
| 80 |
|
| 81 |
-
|
| 82 |
-
|
| 83 |
-
|
| 84 |
|
| 85 |
#### Anthropic Configuration
|
| 86 |
|
|
@@ -92,9 +101,11 @@ ANTHROPIC_MODEL=claude-sonnet-4-5-20250929
|
|
| 92 |
|
| 93 |
The default model is defined in the `Settings` class:
|
| 94 |
|
| 95 |
-
|
| 96 |
-
|
| 97 |
-
|
|
|
|
|
|
|
| 98 |
|
| 99 |
#### HuggingFace Configuration
|
| 100 |
|
|
@@ -113,13 +124,17 @@ HUGGINGFACE_MODEL=meta-llama/Llama-3.1-8B-Instruct
|
|
| 113 |
|
| 114 |
The HuggingFace token can be set via either environment variable:
|
| 115 |
|
| 116 |
-
|
| 117 |
-
|
| 118 |
-
|
|
|
|
|
|
|
| 119 |
|
| 120 |
-
|
| 121 |
-
|
| 122 |
-
|
|
|
|
|
|
|
| 123 |
|
| 124 |
## Optional Configuration
|
| 125 |
|
|
@@ -143,9 +158,12 @@ HUGGINGFACE_EMBEDDING_MODEL=sentence-transformers/all-MiniLM-L6-v2
|
|
| 143 |
|
| 144 |
The embedding provider configuration:
|
| 145 |
|
| 146 |
-
|
| 147 |
-
[
|
| 148 |
-
|
|
|
|
|
|
|
|
|
|
| 149 |
|
| 150 |
**Note**: OpenAI embeddings require `OPENAI_API_KEY`. The local provider (default) uses sentence-transformers and requires no API key.
|
| 151 |
|
|
@@ -173,9 +191,12 @@ TAVILY_API_KEY=your_tavily_api_key_here
|
|
| 173 |
|
| 174 |
The web search provider configuration:
|
| 175 |
|
| 176 |
-
|
| 177 |
-
[
|
| 178 |
-
|
|
|
|
|
|
|
|
|
|
| 179 |
|
| 180 |
**Note**: DuckDuckGo is the default and requires no API key, making it ideal for development and testing.
|
| 181 |
|
|
@@ -190,9 +211,16 @@ NCBI_API_KEY=your_ncbi_api_key_here
|
|
| 190 |
|
| 191 |
The PubMed tool uses this configuration:
|
| 192 |
|
| 193 |
-
|
| 194 |
-
|
| 195 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 196 |
|
| 197 |
### Agent Configuration
|
| 198 |
|
|
@@ -211,9 +239,14 @@ USE_GRAPH_EXECUTION=false
|
|
| 211 |
|
| 212 |
The agent configuration fields:
|
| 213 |
|
| 214 |
-
|
| 215 |
-
|
| 216 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 217 |
|
| 218 |
### Budget & Rate Limiting Configuration
|
| 219 |
|
|
@@ -232,9 +265,27 @@ DEFAULT_ITERATIONS_LIMIT=10
|
|
| 232 |
|
| 233 |
The budget configuration with validation:
|
| 234 |
|
| 235 |
-
|
| 236 |
-
|
| 237 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 238 |
|
| 239 |
### RAG Service Configuration
|
| 240 |
|
|
@@ -253,9 +304,23 @@ RAG_AUTO_INGEST=true
|
|
| 253 |
|
| 254 |
The RAG configuration:
|
| 255 |
|
| 256 |
-
|
| 257 |
-
|
| 258 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 259 |
|
| 260 |
### ChromaDB Configuration
|
| 261 |
|
|
@@ -277,9 +342,21 @@ CHROMA_DB_PORT=8000
|
|
| 277 |
|
| 278 |
The ChromaDB configuration:
|
| 279 |
|
| 280 |
-
|
| 281 |
-
|
| 282 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 283 |
|
| 284 |
### External Services
|
| 285 |
|
|
@@ -297,9 +374,11 @@ MODAL_TOKEN_SECRET=your_modal_token_secret_here
|
|
| 297 |
|
| 298 |
The Modal configuration:
|
| 299 |
|
| 300 |
-
|
| 301 |
-
|
| 302 |
-
|
|
|
|
|
|
|
| 303 |
|
| 304 |
### Logging Configuration
|
| 305 |
|
|
@@ -312,15 +391,35 @@ LOG_LEVEL=INFO
|
|
| 312 |
|
| 313 |
The logging configuration:
|
| 314 |
|
| 315 |
-
|
| 316 |
-
|
| 317 |
-
|
|
|
|
| 318 |
|
| 319 |
Logging is configured via the `configure_logging()` function:
|
| 320 |
|
| 321 |
-
|
| 322 |
-
|
| 323 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 324 |
|
| 325 |
## Configuration Properties
|
| 326 |
|
|
@@ -330,9 +429,27 @@ The `Settings` class provides helpful properties for checking configuration stat
|
|
| 330 |
|
| 331 |
Check which API keys are available:
|
| 332 |
|
| 333 |
-
|
| 334 |
-
|
| 335 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 336 |
|
| 337 |
**Usage:**
|
| 338 |
|
|
@@ -361,13 +478,29 @@ if settings.has_any_llm_key:
|
|
| 361 |
|
| 362 |
Check if external services are configured:
|
| 363 |
|
| 364 |
-
|
| 365 |
-
|
| 366 |
-
|
|
|
|
|
|
|
|
|
|
| 367 |
|
| 368 |
-
|
| 369 |
-
|
| 370 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 371 |
|
| 372 |
**Usage:**
|
| 373 |
|
|
@@ -388,15 +521,34 @@ if settings.web_search_available:
|
|
| 388 |
|
| 389 |
Get the API key for the configured provider:
|
| 390 |
|
| 391 |
-
|
| 392 |
-
|
| 393 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 394 |
|
| 395 |
For OpenAI-specific operations (e.g., Magentic mode):
|
| 396 |
|
| 397 |
-
|
| 398 |
-
|
| 399 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 400 |
|
| 401 |
## Configuration Usage in Codebase
|
| 402 |
|
|
@@ -406,25 +558,53 @@ The configuration system is used throughout the codebase:
|
|
| 406 |
|
| 407 |
The LLM factory uses settings to create appropriate models:
|
| 408 |
|
| 409 |
-
|
| 410 |
-
|
| 411 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 412 |
|
| 413 |
### Embedding Service
|
| 414 |
|
| 415 |
The embedding service uses local embedding model configuration:
|
| 416 |
|
| 417 |
-
|
| 418 |
-
|
| 419 |
-
|
|
|
|
|
|
|
| 420 |
|
| 421 |
### Orchestrator Factory
|
| 422 |
|
| 423 |
The orchestrator factory uses settings to determine mode:
|
| 424 |
|
| 425 |
-
|
| 426 |
-
|
| 427 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 428 |
|
| 429 |
## Environment Variables Reference
|
| 430 |
|
|
@@ -507,15 +687,17 @@ Settings are validated on load using Pydantic validation:
|
|
| 507 |
|
| 508 |
The `max_iterations` field has range validation:
|
| 509 |
|
| 510 |
-
|
| 511 |
-
|
| 512 |
-
|
| 513 |
|
| 514 |
The `llm_provider` field has literal validation:
|
| 515 |
|
| 516 |
-
|
| 517 |
-
[
|
| 518 |
-
|
|
|
|
|
|
|
| 519 |
|
| 520 |
## Error Handling
|
| 521 |
|
|
|
|
| 25 |
|
| 26 |
The [`Settings`][settings-class] class extends `BaseSettings` from `pydantic_settings` and defines all application configuration:
|
| 27 |
|
| 28 |
+
```13:21:src/utils/config.py
|
| 29 |
+
class Settings(BaseSettings):
|
| 30 |
+
"""Strongly-typed application settings."""
|
| 31 |
+
|
| 32 |
+
model_config = SettingsConfigDict(
|
| 33 |
+
env_file=".env",
|
| 34 |
+
env_file_encoding="utf-8",
|
| 35 |
+
case_sensitive=False,
|
| 36 |
+
extra="ignore",
|
| 37 |
+
)
|
| 38 |
+
```
|
| 39 |
|
| 40 |
[View source](https://github.com/DeepCritical/GradioDemo/blob/main/src/utils/config.py#L13-L21)
|
| 41 |
|
|
|
|
| 43 |
|
| 44 |
A global `settings` instance is available for import:
|
| 45 |
|
| 46 |
+
```234:235:src/utils/config.py
|
| 47 |
+
# Singleton for easy import
|
| 48 |
+
settings = get_settings()
|
| 49 |
+
```
|
| 50 |
|
| 51 |
[View source](https://github.com/DeepCritical/GradioDemo/blob/main/src/utils/config.py#L234-L235)
|
| 52 |
|
|
|
|
| 87 |
|
| 88 |
The default model is defined in the `Settings` class:
|
| 89 |
|
| 90 |
+
```29:29:src/utils/config.py
|
| 91 |
+
openai_model: str = Field(default="gpt-5.1", description="OpenAI model name")
|
| 92 |
+
```
|
| 93 |
|
| 94 |
#### Anthropic Configuration
|
| 95 |
|
|
|
|
| 101 |
|
| 102 |
The default model is defined in the `Settings` class:
|
| 103 |
|
| 104 |
+
```30:32:src/utils/config.py
|
| 105 |
+
anthropic_model: str = Field(
|
| 106 |
+
default="claude-sonnet-4-5-20250929", description="Anthropic model"
|
| 107 |
+
)
|
| 108 |
+
```
|
| 109 |
|
| 110 |
#### HuggingFace Configuration
|
| 111 |
|
|
|
|
| 124 |
|
| 125 |
The HuggingFace token can be set via either environment variable:
|
| 126 |
|
| 127 |
+
```33:35:src/utils/config.py
|
| 128 |
+
hf_token: str | None = Field(
|
| 129 |
+
default=None, alias="HF_TOKEN", description="HuggingFace API token"
|
| 130 |
+
)
|
| 131 |
+
```
|
| 132 |
|
| 133 |
+
```57:59:src/utils/config.py
|
| 134 |
+
huggingface_api_key: str | None = Field(
|
| 135 |
+
default=None, description="HuggingFace API token (HF_TOKEN or HUGGINGFACE_API_KEY)"
|
| 136 |
+
)
|
| 137 |
+
```
|
| 138 |
|
| 139 |
## Optional Configuration
|
| 140 |
|
|
|
|
| 158 |
|
| 159 |
The embedding provider configuration:
|
| 160 |
|
| 161 |
+
```47:50:src/utils/config.py
|
| 162 |
+
embedding_provider: Literal["openai", "local", "huggingface"] = Field(
|
| 163 |
+
default="local",
|
| 164 |
+
description="Embedding provider to use",
|
| 165 |
+
)
|
| 166 |
+
```
|
| 167 |
|
| 168 |
**Note**: OpenAI embeddings require `OPENAI_API_KEY`. The local provider (default) uses sentence-transformers and requires no API key.
|
| 169 |
|
|
|
|
| 191 |
|
| 192 |
The web search provider configuration:
|
| 193 |
|
| 194 |
+
```71:74:src/utils/config.py
|
| 195 |
+
web_search_provider: Literal["serper", "searchxng", "brave", "tavily", "duckduckgo"] = Field(
|
| 196 |
+
default="duckduckgo",
|
| 197 |
+
description="Web search provider to use",
|
| 198 |
+
)
|
| 199 |
+
```
|
| 200 |
|
| 201 |
**Note**: DuckDuckGo is the default and requires no API key, making it ideal for development and testing.
|
| 202 |
|
|
|
|
| 211 |
|
| 212 |
The PubMed tool uses this configuration:
|
| 213 |
|
| 214 |
+
```22:29:src/tools/pubmed.py
|
| 215 |
+
def __init__(self, api_key: str | None = None) -> None:
|
| 216 |
+
self.api_key = api_key or settings.ncbi_api_key
|
| 217 |
+
# Ignore placeholder values from .env.example
|
| 218 |
+
if self.api_key == "your-ncbi-key-here":
|
| 219 |
+
self.api_key = None
|
| 220 |
+
|
| 221 |
+
# Use shared rate limiter
|
| 222 |
+
self._limiter = get_pubmed_limiter(self.api_key)
|
| 223 |
+
```
|
| 224 |
|
| 225 |
### Agent Configuration
|
| 226 |
|
|
|
|
| 239 |
|
| 240 |
The agent configuration fields:
|
| 241 |
|
| 242 |
+
```80:85:src/utils/config.py
|
| 243 |
+
# Agent Configuration
|
| 244 |
+
max_iterations: int = Field(default=10, ge=1, le=50)
|
| 245 |
+
search_timeout: int = Field(default=30, description="Seconds to wait for search")
|
| 246 |
+
use_graph_execution: bool = Field(
|
| 247 |
+
default=False, description="Use graph-based execution for research flows"
|
| 248 |
+
)
|
| 249 |
+
```
|
| 250 |
|
| 251 |
### Budget & Rate Limiting Configuration
|
| 252 |
|
|
|
|
| 265 |
|
| 266 |
The budget configuration with validation:
|
| 267 |
|
| 268 |
+
```87:105:src/utils/config.py
|
| 269 |
+
# Budget & Rate Limiting Configuration
|
| 270 |
+
default_token_limit: int = Field(
|
| 271 |
+
default=100000,
|
| 272 |
+
ge=1000,
|
| 273 |
+
le=1000000,
|
| 274 |
+
description="Default token budget per research loop",
|
| 275 |
+
)
|
| 276 |
+
default_time_limit_minutes: int = Field(
|
| 277 |
+
default=10,
|
| 278 |
+
ge=1,
|
| 279 |
+
le=120,
|
| 280 |
+
description="Default time limit per research loop (minutes)",
|
| 281 |
+
)
|
| 282 |
+
default_iterations_limit: int = Field(
|
| 283 |
+
default=10,
|
| 284 |
+
ge=1,
|
| 285 |
+
le=50,
|
| 286 |
+
description="Default iterations limit per research loop",
|
| 287 |
+
)
|
| 288 |
+
```
|
| 289 |
|
| 290 |
### RAG Service Configuration
|
| 291 |
|
|
|
|
| 304 |
|
| 305 |
The RAG configuration:
|
| 306 |
|
| 307 |
+
```127:141:src/utils/config.py
|
| 308 |
+
# RAG Service Configuration
|
| 309 |
+
rag_collection_name: str = Field(
|
| 310 |
+
default="deepcritical_evidence",
|
| 311 |
+
description="ChromaDB collection name for RAG",
|
| 312 |
+
)
|
| 313 |
+
rag_similarity_top_k: int = Field(
|
| 314 |
+
default=5,
|
| 315 |
+
ge=1,
|
| 316 |
+
le=50,
|
| 317 |
+
description="Number of top results to retrieve from RAG",
|
| 318 |
+
)
|
| 319 |
+
rag_auto_ingest: bool = Field(
|
| 320 |
+
default=True,
|
| 321 |
+
description="Automatically ingest evidence into RAG",
|
| 322 |
+
)
|
| 323 |
+
```
|
| 324 |
|
| 325 |
### ChromaDB Configuration
|
| 326 |
|
|
|
|
| 342 |
|
| 343 |
The ChromaDB configuration:
|
| 344 |
|
| 345 |
+
```113:125:src/utils/config.py
|
| 346 |
+
chroma_db_path: str = Field(default="./chroma_db", description="ChromaDB storage path")
|
| 347 |
+
chroma_db_persist: bool = Field(
|
| 348 |
+
default=True,
|
| 349 |
+
description="Whether to persist ChromaDB to disk",
|
| 350 |
+
)
|
| 351 |
+
chroma_db_host: str | None = Field(
|
| 352 |
+
default=None,
|
| 353 |
+
description="ChromaDB server host (for remote ChromaDB)",
|
| 354 |
+
)
|
| 355 |
+
chroma_db_port: int | None = Field(
|
| 356 |
+
default=None,
|
| 357 |
+
description="ChromaDB server port (for remote ChromaDB)",
|
| 358 |
+
)
|
| 359 |
+
```
|
| 360 |
|
| 361 |
### External Services
|
| 362 |
|
|
|
|
| 374 |
|
| 375 |
The Modal configuration:
|
| 376 |
|
| 377 |
+
```110:112:src/utils/config.py
|
| 378 |
+
# External Services
|
| 379 |
+
modal_token_id: str | None = Field(default=None, description="Modal token ID")
|
| 380 |
+
modal_token_secret: str | None = Field(default=None, description="Modal token secret")
|
| 381 |
+
```
|
| 382 |
|
| 383 |
### Logging Configuration
|
| 384 |
|
|
|
|
| 391 |
|
| 392 |
The logging configuration:
|
| 393 |
|
| 394 |
+
```107:108:src/utils/config.py
|
| 395 |
+
# Logging
|
| 396 |
+
log_level: Literal["DEBUG", "INFO", "WARNING", "ERROR"] = "INFO"
|
| 397 |
+
```
|
| 398 |
|
| 399 |
Logging is configured via the `configure_logging()` function:
|
| 400 |
|
| 401 |
+
```212:231:src/utils/config.py
|
| 402 |
+
def configure_logging(settings: Settings) -> None:
|
| 403 |
+
"""Configure structured logging with the configured log level."""
|
| 404 |
+
# Set stdlib logging level from settings
|
| 405 |
+
logging.basicConfig(
|
| 406 |
+
level=getattr(logging, settings.log_level),
|
| 407 |
+
format="%(message)s",
|
| 408 |
+
)
|
| 409 |
+
|
| 410 |
+
structlog.configure(
|
| 411 |
+
processors=[
|
| 412 |
+
structlog.stdlib.filter_by_level,
|
| 413 |
+
structlog.stdlib.add_logger_name,
|
| 414 |
+
structlog.stdlib.add_log_level,
|
| 415 |
+
structlog.processors.TimeStamper(fmt="iso"),
|
| 416 |
+
structlog.processors.JSONRenderer(),
|
| 417 |
+
],
|
| 418 |
+
wrapper_class=structlog.stdlib.BoundLogger,
|
| 419 |
+
context_class=dict,
|
| 420 |
+
logger_factory=structlog.stdlib.LoggerFactory(),
|
| 421 |
+
)
|
| 422 |
+
```
|
| 423 |
|
| 424 |
## Configuration Properties
|
| 425 |
|
|
|
|
| 429 |
|
| 430 |
Check which API keys are available:
|
| 431 |
|
| 432 |
+
```171:189:src/utils/config.py
|
| 433 |
+
@property
|
| 434 |
+
def has_openai_key(self) -> bool:
|
| 435 |
+
"""Check if OpenAI API key is available."""
|
| 436 |
+
return bool(self.openai_api_key)
|
| 437 |
+
|
| 438 |
+
@property
|
| 439 |
+
def has_anthropic_key(self) -> bool:
|
| 440 |
+
"""Check if Anthropic API key is available."""
|
| 441 |
+
return bool(self.anthropic_api_key)
|
| 442 |
+
|
| 443 |
+
@property
|
| 444 |
+
def has_huggingface_key(self) -> bool:
|
| 445 |
+
"""Check if HuggingFace API key is available."""
|
| 446 |
+
return bool(self.huggingface_api_key or self.hf_token)
|
| 447 |
+
|
| 448 |
+
@property
|
| 449 |
+
def has_any_llm_key(self) -> bool:
|
| 450 |
+
"""Check if any LLM API key is available."""
|
| 451 |
+
return self.has_openai_key or self.has_anthropic_key or self.has_huggingface_key
|
| 452 |
+
```
|
| 453 |
|
| 454 |
**Usage:**
|
| 455 |
|
|
|
|
| 478 |
|
| 479 |
Check if external services are configured:
|
| 480 |
|
| 481 |
+
```143:146:src/utils/config.py
|
| 482 |
+
@property
|
| 483 |
+
def modal_available(self) -> bool:
|
| 484 |
+
"""Check if Modal credentials are configured."""
|
| 485 |
+
return bool(self.modal_token_id and self.modal_token_secret)
|
| 486 |
+
```
|
| 487 |
|
| 488 |
+
```191:204:src/utils/config.py
|
| 489 |
+
@property
|
| 490 |
+
def web_search_available(self) -> bool:
|
| 491 |
+
"""Check if web search is available (either no-key provider or API key present)."""
|
| 492 |
+
if self.web_search_provider == "duckduckgo":
|
| 493 |
+
return True # No API key required
|
| 494 |
+
if self.web_search_provider == "serper":
|
| 495 |
+
return bool(self.serper_api_key)
|
| 496 |
+
if self.web_search_provider == "searchxng":
|
| 497 |
+
return bool(self.searchxng_host)
|
| 498 |
+
if self.web_search_provider == "brave":
|
| 499 |
+
return bool(self.brave_api_key)
|
| 500 |
+
if self.web_search_provider == "tavily":
|
| 501 |
+
return bool(self.tavily_api_key)
|
| 502 |
+
return False
|
| 503 |
+
```
|
| 504 |
|
| 505 |
**Usage:**
|
| 506 |
|
|
|
|
| 521 |
|
| 522 |
Get the API key for the configured provider:
|
| 523 |
|
| 524 |
+
```148:160:src/utils/config.py
|
| 525 |
+
def get_api_key(self) -> str:
|
| 526 |
+
"""Get the API key for the configured provider."""
|
| 527 |
+
if self.llm_provider == "openai":
|
| 528 |
+
if not self.openai_api_key:
|
| 529 |
+
raise ConfigurationError("OPENAI_API_KEY not set")
|
| 530 |
+
return self.openai_api_key
|
| 531 |
+
|
| 532 |
+
if self.llm_provider == "anthropic":
|
| 533 |
+
if not self.anthropic_api_key:
|
| 534 |
+
raise ConfigurationError("ANTHROPIC_API_KEY not set")
|
| 535 |
+
return self.anthropic_api_key
|
| 536 |
+
|
| 537 |
+
raise ConfigurationError(f"Unknown LLM provider: {self.llm_provider}")
|
| 538 |
+
```
|
| 539 |
|
| 540 |
For OpenAI-specific operations (e.g., Magentic mode):
|
| 541 |
|
| 542 |
+
```162:169:src/utils/config.py
|
| 543 |
+
def get_openai_api_key(self) -> str:
|
| 544 |
+
"""Get OpenAI API key (required for Magentic function calling)."""
|
| 545 |
+
if not self.openai_api_key:
|
| 546 |
+
raise ConfigurationError(
|
| 547 |
+
"OPENAI_API_KEY not set. Magentic mode requires OpenAI for function calling. "
|
| 548 |
+
"Use mode='simple' for other providers."
|
| 549 |
+
)
|
| 550 |
+
return self.openai_api_key
|
| 551 |
+
```
|
| 552 |
|
| 553 |
## Configuration Usage in Codebase
|
| 554 |
|
|
|
|
| 558 |
|
| 559 |
The LLM factory uses settings to create appropriate models:
|
| 560 |
|
| 561 |
+
```129:144:src/utils/llm_factory.py
|
| 562 |
+
if settings.llm_provider == "huggingface":
|
| 563 |
+
model_name = settings.huggingface_model or "meta-llama/Llama-3.1-8B-Instruct"
|
| 564 |
+
hf_provider = HuggingFaceProvider(api_key=settings.hf_token)
|
| 565 |
+
return HuggingFaceModel(model_name, provider=hf_provider)
|
| 566 |
+
|
| 567 |
+
if settings.llm_provider == "openai":
|
| 568 |
+
if not settings.openai_api_key:
|
| 569 |
+
raise ConfigurationError("OPENAI_API_KEY not set for pydantic-ai")
|
| 570 |
+
provider = OpenAIProvider(api_key=settings.openai_api_key)
|
| 571 |
+
return OpenAIModel(settings.openai_model, provider=provider)
|
| 572 |
+
|
| 573 |
+
if settings.llm_provider == "anthropic":
|
| 574 |
+
if not settings.anthropic_api_key:
|
| 575 |
+
raise ConfigurationError("ANTHROPIC_API_KEY not set for pydantic-ai")
|
| 576 |
+
anthropic_provider = AnthropicProvider(api_key=settings.anthropic_api_key)
|
| 577 |
+
return AnthropicModel(settings.anthropic_model, provider=anthropic_provider)
|
| 578 |
+
```
|
| 579 |
|
| 580 |
### Embedding Service
|
| 581 |
|
| 582 |
The embedding service uses local embedding model configuration:
|
| 583 |
|
| 584 |
+
```29:31:src/services/embeddings.py
|
| 585 |
+
def __init__(self, model_name: str | None = None):
|
| 586 |
+
self._model_name = model_name or settings.local_embedding_model
|
| 587 |
+
self._model = SentenceTransformer(self._model_name)
|
| 588 |
+
```
|
| 589 |
|
| 590 |
### Orchestrator Factory
|
| 591 |
|
| 592 |
The orchestrator factory uses settings to determine mode:
|
| 593 |
|
| 594 |
+
```69:80:src/orchestrator_factory.py
|
| 595 |
+
def _determine_mode(explicit_mode: str | None) -> str:
|
| 596 |
+
"""Determine which mode to use."""
|
| 597 |
+
if explicit_mode:
|
| 598 |
+
if explicit_mode in ("magentic", "advanced"):
|
| 599 |
+
return "advanced"
|
| 600 |
+
return "simple"
|
| 601 |
+
|
| 602 |
+
# Auto-detect: advanced if paid API key available
|
| 603 |
+
if settings.has_openai_key:
|
| 604 |
+
return "advanced"
|
| 605 |
+
|
| 606 |
+
return "simple"
|
| 607 |
+
```
|
| 608 |
|
| 609 |
## Environment Variables Reference
|
| 610 |
|
|
|
|
| 687 |
|
| 688 |
The `max_iterations` field has range validation:
|
| 689 |
|
| 690 |
+
```81:81:src/utils/config.py
|
| 691 |
+
max_iterations: int = Field(default=10, ge=1, le=50)
|
| 692 |
+
```
|
| 693 |
|
| 694 |
The `llm_provider` field has literal validation:
|
| 695 |
|
| 696 |
+
```26:28:src/utils/config.py
|
| 697 |
+
llm_provider: Literal["openai", "anthropic", "huggingface"] = Field(
|
| 698 |
+
default="openai", description="Which LLM provider to use"
|
| 699 |
+
)
|
| 700 |
+
```
|
| 701 |
|
| 702 |
## Error Handling
|
| 703 |
|
CONTRIBUTING.md → docs/contributing.md
RENAMED
|
@@ -1,26 +1,24 @@
|
|
| 1 |
-
# Contributing to
|
| 2 |
|
| 3 |
-
Thank you for your interest in contributing to
|
| 4 |
|
| 5 |
## Table of Contents
|
| 6 |
|
| 7 |
- [Git Workflow](#git-workflow)
|
| 8 |
- [Getting Started](#getting-started)
|
| 9 |
- [Development Commands](#development-commands)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 10 |
- [MCP Integration](#mcp-integration)
|
| 11 |
- [Common Pitfalls](#common-pitfalls)
|
| 12 |
- [Key Principles](#key-principles)
|
| 13 |
- [Pull Request Process](#pull-request-process)
|
| 14 |
|
| 15 |
-
> **Note**: Additional sections (Code Style, Error Handling, Testing, Implementation Patterns, Code Quality, and Prompt Engineering) are available as separate pages in the [documentation](https://deepcritical.github.io/GradioDemo/contributing/).
|
| 16 |
-
> **Note on Project Names**: "The DETERMINATOR" is the product name, "DeepCritical" is the organization/project name, and "determinator" is the Python package name.
|
| 17 |
-
|
| 18 |
-
## Repository Information
|
| 19 |
-
|
| 20 |
-
- **GitHub Repository**: [`DeepCritical/GradioDemo`](https://github.com/DeepCritical/GradioDemo) (source of truth, PRs, code review)
|
| 21 |
-
- **HuggingFace Space**: [`DataQuests/DeepCritical`](https://huggingface.co/spaces/DataQuests/DeepCritical) (deployment/demo)
|
| 22 |
-
- **Package Name**: `determinator` (Python package name in `pyproject.toml`)
|
| 23 |
-
|
| 24 |
## Git Workflow
|
| 25 |
|
| 26 |
- `main`: Production-ready (GitHub)
|
|
@@ -29,31 +27,9 @@ Thank you for your interest in contributing to The DETERMINATOR! This guide will
|
|
| 29 |
- **NEVER** push directly to `main` or `dev` on HuggingFace
|
| 30 |
- GitHub is source of truth; HuggingFace is for deployment
|
| 31 |
|
| 32 |
-
### Dual Repository Setup
|
| 33 |
-
|
| 34 |
-
This project uses a dual repository setup:
|
| 35 |
-
|
| 36 |
-
- **GitHub (`DeepCritical/GradioDemo`)**: Source of truth for code, PRs, and code review
|
| 37 |
-
- **HuggingFace (`DataQuests/DeepCritical`)**: Deployment target for the Gradio demo
|
| 38 |
-
|
| 39 |
-
#### Remote Configuration
|
| 40 |
-
|
| 41 |
-
When cloning, set up remotes as follows:
|
| 42 |
-
|
| 43 |
-
```bash
|
| 44 |
-
# Clone from GitHub
|
| 45 |
-
git clone https://github.com/DeepCritical/GradioDemo.git
|
| 46 |
-
cd GradioDemo
|
| 47 |
-
|
| 48 |
-
# Add HuggingFace remote (optional, for deployment)
|
| 49 |
-
git remote add huggingface-upstream https://huggingface.co/spaces/DataQuests/DeepCritical
|
| 50 |
-
```
|
| 51 |
-
|
| 52 |
-
**Important**: Never push directly to `main` or `dev` on HuggingFace. Always work through GitHub PRs. GitHub is the source of truth; HuggingFace is for deployment/demo only.
|
| 53 |
-
|
| 54 |
## Getting Started
|
| 55 |
|
| 56 |
-
1. **Fork the repository** on GitHub
|
| 57 |
2. **Clone your fork**:
|
| 58 |
|
| 59 |
```bash
|
|
@@ -64,8 +40,7 @@ git remote add huggingface-upstream https://huggingface.co/spaces/DataQuests/Dee
|
|
| 64 |
3. **Install dependencies**:
|
| 65 |
|
| 66 |
```bash
|
| 67 |
-
|
| 68 |
-
uv run pre-commit install
|
| 69 |
```
|
| 70 |
|
| 71 |
4. **Create a feature branch**:
|
|
@@ -78,9 +53,7 @@ git remote add huggingface-upstream https://huggingface.co/spaces/DataQuests/Dee
|
|
| 78 |
6. **Run checks**:
|
| 79 |
|
| 80 |
```bash
|
| 81 |
-
|
| 82 |
-
uv run mypy src
|
| 83 |
-
uv run pytest --cov=src --cov-report=term-missing tests/unit/ -v -m "not openai" -p no:logfire
|
| 84 |
```
|
| 85 |
|
| 86 |
7. **Commit and push**:
|
|
@@ -89,72 +62,22 @@ git remote add huggingface-upstream https://huggingface.co/spaces/DataQuests/Dee
|
|
| 89 |
git commit -m "Description of changes"
|
| 90 |
git push origin yourname-feature-name
|
| 91 |
```
|
| 92 |
-
|
| 93 |
8. **Create a pull request** on GitHub
|
| 94 |
|
| 95 |
-
## Package Manager
|
| 96 |
-
|
| 97 |
-
This project uses [`uv`](https://github.com/astral-sh/uv) as the package manager. All commands should be prefixed with `uv run` to ensure they run in the correct environment.
|
| 98 |
-
|
| 99 |
-
### Installation
|
| 100 |
-
|
| 101 |
-
```bash
|
| 102 |
-
# Install uv if you haven't already (recommended: standalone installer)
|
| 103 |
-
# Unix/macOS/Linux:
|
| 104 |
-
curl -LsSf https://astral.sh/uv/install.sh | sh
|
| 105 |
-
|
| 106 |
-
# Windows (PowerShell):
|
| 107 |
-
powershell -ExecutionPolicy ByPass -c "irm https://astral.sh/uv/install.ps1 | iex"
|
| 108 |
-
|
| 109 |
-
# Alternative: pipx install uv
|
| 110 |
-
# Or: pip install uv
|
| 111 |
-
|
| 112 |
-
# Sync all dependencies including dev extras
|
| 113 |
-
uv sync --all-extras
|
| 114 |
-
|
| 115 |
-
# Install pre-commit hooks
|
| 116 |
-
uv run pre-commit install
|
| 117 |
-
```
|
| 118 |
-
|
| 119 |
## Development Commands
|
| 120 |
|
| 121 |
```bash
|
| 122 |
-
#
|
| 123 |
-
|
| 124 |
-
|
| 125 |
-
|
| 126 |
-
#
|
| 127 |
-
|
| 128 |
-
|
| 129 |
-
|
| 130 |
-
|
| 131 |
-
|
| 132 |
-
# Testing Commands
|
| 133 |
-
uv run pytest tests/unit/ -v -m "not openai" -p no:logfire # Run unit tests (excludes OpenAI tests)
|
| 134 |
-
uv run pytest tests/ -v -m "huggingface" -p no:logfire # Run HuggingFace tests
|
| 135 |
-
uv run pytest tests/ -v -p no:logfire # Run all tests
|
| 136 |
-
uv run pytest --cov=src --cov-report=term-missing tests/unit/ -v -m "not openai" -p no:logfire # Tests with terminal coverage
|
| 137 |
-
uv run pytest --cov=src --cov-report=html -p no:logfire # Generate HTML coverage report (opens htmlcov/index.html)
|
| 138 |
-
|
| 139 |
-
# Documentation Commands
|
| 140 |
-
uv run mkdocs build # Build documentation
|
| 141 |
-
uv run mkdocs serve # Serve documentation locally (http://127.0.0.1:8000)
|
| 142 |
```
|
| 143 |
|
| 144 |
-
### Test Markers
|
| 145 |
-
|
| 146 |
-
The project uses pytest markers to categorize tests. See [Testing Guidelines](docs/contributing/testing.md) for details:
|
| 147 |
-
|
| 148 |
-
- `unit`: Unit tests (mocked, fast)
|
| 149 |
-
- `integration`: Integration tests (real APIs)
|
| 150 |
-
- `slow`: Slow tests
|
| 151 |
-
- `openai`: Tests requiring OpenAI API key
|
| 152 |
-
- `huggingface`: Tests requiring HuggingFace API key
|
| 153 |
-
- `embedding_provider`: Tests requiring API-based embedding providers
|
| 154 |
-
- `local_embeddings`: Tests using local embeddings
|
| 155 |
-
|
| 156 |
-
**Note**: The `-p no:logfire` flag disables the logfire plugin to avoid conflicts during testing.
|
| 157 |
-
|
| 158 |
## Code Style & Conventions
|
| 159 |
|
| 160 |
### Type Safety
|
|
@@ -163,9 +86,11 @@ The project uses pytest markers to categorize tests. See [Testing Guidelines](do
|
|
| 163 |
- Use `mypy --strict` compliance (no `Any` unless absolutely necessary)
|
| 164 |
- Use `TYPE_CHECKING` imports for circular dependencies:
|
| 165 |
|
| 166 |
-
|
| 167 |
-
|
| 168 |
-
|
|
|
|
|
|
|
| 169 |
|
| 170 |
### Pydantic Models
|
| 171 |
|
|
@@ -200,10 +125,10 @@ result = await loop.run_in_executor(None, cpu_bound_function, args)
|
|
| 200 |
|
| 201 |
### Pre-commit
|
| 202 |
|
| 203 |
-
-
|
| 204 |
- Must pass: lint + typecheck + test-cov
|
| 205 |
-
-
|
| 206 |
-
-
|
| 207 |
|
| 208 |
## Error Handling & Logging
|
| 209 |
|
|
@@ -211,9 +136,10 @@ result = await loop.run_in_executor(None, cpu_bound_function, args)
|
|
| 211 |
|
| 212 |
Use custom exception hierarchy (`src/utils/exceptions.py`):
|
| 213 |
|
| 214 |
-
|
| 215 |
-
|
| 216 |
-
|
|
|
|
| 217 |
|
| 218 |
### Error Handling Rules
|
| 219 |
|
|
@@ -273,7 +199,7 @@ except httpx.HTTPError as e:
|
|
| 273 |
1. Write failing test in `tests/unit/`
|
| 274 |
2. Implement in `src/`
|
| 275 |
3. Ensure test passes
|
| 276 |
-
4. Run
|
| 277 |
|
| 278 |
### Test Examples
|
| 279 |
|
|
@@ -294,8 +220,7 @@ async def test_real_pubmed_search():
|
|
| 294 |
|
| 295 |
### Test Coverage
|
| 296 |
|
| 297 |
-
- Run `
|
| 298 |
-
- Run `uv run pytest --cov=src --cov-report=html -p no:logfire` for HTML coverage report (opens `htmlcov/index.html`)
|
| 299 |
- Aim for >80% coverage on critical paths
|
| 300 |
- Exclude: `__init__.py`, `TYPE_CHECKING` blocks
|
| 301 |
|
|
@@ -339,9 +264,11 @@ class MySearchTool:
|
|
| 339 |
- Lazy initialization for optional dependencies (e.g., embeddings, Modal)
|
| 340 |
- Check requirements before initialization:
|
| 341 |
|
| 342 |
-
|
| 343 |
-
|
| 344 |
-
|
|
|
|
|
|
|
| 345 |
|
| 346 |
### State Management
|
| 347 |
|
|
@@ -353,9 +280,11 @@ class MySearchTool:
|
|
| 353 |
|
| 354 |
Use `@lru_cache(maxsize=1)` for singletons:
|
| 355 |
|
| 356 |
-
|
| 357 |
-
|
| 358 |
-
|
|
|
|
|
|
|
| 359 |
|
| 360 |
- Lazy initialization to avoid requiring dependencies at import time
|
| 361 |
|
|
@@ -369,9 +298,22 @@ Use `@lru_cache(maxsize=1)` for singletons:
|
|
| 369 |
|
| 370 |
Example:
|
| 371 |
|
| 372 |
-
|
| 373 |
-
|
| 374 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 375 |
|
| 376 |
### Code Comments
|
| 377 |
|
|
@@ -468,7 +410,7 @@ Example:
|
|
| 468 |
|
| 469 |
## Pull Request Process
|
| 470 |
|
| 471 |
-
1. Ensure all checks pass: `
|
| 472 |
2. Update documentation if needed
|
| 473 |
3. Add tests for new features
|
| 474 |
4. Update CHANGELOG if applicable
|
|
@@ -476,19 +418,11 @@ Example:
|
|
| 476 |
6. Address review feedback
|
| 477 |
7. Wait for approval before merging
|
| 478 |
|
| 479 |
-
## Project Structure
|
| 480 |
-
|
| 481 |
-
- `src/`: Main source code
|
| 482 |
-
- `tests/`: Test files (`unit/` and `integration/`)
|
| 483 |
-
- `docs/`: Documentation source files (MkDocs)
|
| 484 |
-
- `examples/`: Example usage scripts
|
| 485 |
-
- `pyproject.toml`: Project configuration and dependencies
|
| 486 |
-
- `.pre-commit-config.yaml`: Pre-commit hook configuration
|
| 487 |
-
|
| 488 |
## Questions?
|
| 489 |
|
| 490 |
-
- Open an issue on
|
| 491 |
-
- Check existing
|
| 492 |
- Review code examples in the codebase
|
| 493 |
|
| 494 |
-
Thank you for contributing to
|
|
|
|
|
|
| 1 |
+
# Contributing to DeepCritical
|
| 2 |
|
| 3 |
+
Thank you for your interest in contributing to DeepCritical! This guide will help you get started.
|
| 4 |
|
| 5 |
## Table of Contents
|
| 6 |
|
| 7 |
- [Git Workflow](#git-workflow)
|
| 8 |
- [Getting Started](#getting-started)
|
| 9 |
- [Development Commands](#development-commands)
|
| 10 |
+
- [Code Style & Conventions](#code-style--conventions)
|
| 11 |
+
- [Type Safety](#type-safety)
|
| 12 |
+
- [Error Handling & Logging](#error-handling--logging)
|
| 13 |
+
- [Testing Requirements](#testing-requirements)
|
| 14 |
+
- [Implementation Patterns](#implementation-patterns)
|
| 15 |
+
- [Code Quality & Documentation](#code-quality--documentation)
|
| 16 |
+
- [Prompt Engineering & Citation Validation](#prompt-engineering--citation-validation)
|
| 17 |
- [MCP Integration](#mcp-integration)
|
| 18 |
- [Common Pitfalls](#common-pitfalls)
|
| 19 |
- [Key Principles](#key-principles)
|
| 20 |
- [Pull Request Process](#pull-request-process)
|
| 21 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 22 |
## Git Workflow
|
| 23 |
|
| 24 |
- `main`: Production-ready (GitHub)
|
|
|
|
| 27 |
- **NEVER** push directly to `main` or `dev` on HuggingFace
|
| 28 |
- GitHub is source of truth; HuggingFace is for deployment
|
| 29 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 30 |
## Getting Started
|
| 31 |
|
| 32 |
+
1. **Fork the repository** on GitHub
|
| 33 |
2. **Clone your fork**:
|
| 34 |
|
| 35 |
```bash
|
|
|
|
| 40 |
3. **Install dependencies**:
|
| 41 |
|
| 42 |
```bash
|
| 43 |
+
make install
|
|
|
|
| 44 |
```
|
| 45 |
|
| 46 |
4. **Create a feature branch**:
|
|
|
|
| 53 |
6. **Run checks**:
|
| 54 |
|
| 55 |
```bash
|
| 56 |
+
make check
|
|
|
|
|
|
|
| 57 |
```
|
| 58 |
|
| 59 |
7. **Commit and push**:
|
|
|
|
| 62 |
git commit -m "Description of changes"
|
| 63 |
git push origin yourname-feature-name
|
| 64 |
```
|
|
|
|
| 65 |
8. **Create a pull request** on GitHub
|
| 66 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 67 |
## Development Commands
|
| 68 |
|
| 69 |
```bash
|
| 70 |
+
make install # Install dependencies + pre-commit
|
| 71 |
+
make check # Lint + typecheck + test (MUST PASS)
|
| 72 |
+
make test # Run unit tests
|
| 73 |
+
make lint # Run ruff
|
| 74 |
+
make format # Format with ruff
|
| 75 |
+
make typecheck # Run mypy
|
| 76 |
+
make test-cov # Test with coverage
|
| 77 |
+
make docs-build # Build documentation
|
| 78 |
+
make docs-serve # Serve documentation locally
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 79 |
```
|
| 80 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 81 |
## Code Style & Conventions
|
| 82 |
|
| 83 |
### Type Safety
|
|
|
|
| 86 |
- Use `mypy --strict` compliance (no `Any` unless absolutely necessary)
|
| 87 |
- Use `TYPE_CHECKING` imports for circular dependencies:
|
| 88 |
|
| 89 |
+
```python
|
| 90 |
+
from typing import TYPE_CHECKING
|
| 91 |
+
if TYPE_CHECKING:
|
| 92 |
+
from src.services.embeddings import EmbeddingService
|
| 93 |
+
```
|
| 94 |
|
| 95 |
### Pydantic Models
|
| 96 |
|
|
|
|
| 125 |
|
| 126 |
### Pre-commit
|
| 127 |
|
| 128 |
+
- Run `make check` before committing
|
| 129 |
- Must pass: lint + typecheck + test-cov
|
| 130 |
+
- Pre-commit hooks installed via `make install`
|
| 131 |
+
- **CRITICAL**: Make sure you run the full pre-commit checks before opening a PR (not draft), otherwise Obstacle is the Way will lose his mind
|
| 132 |
|
| 133 |
## Error Handling & Logging
|
| 134 |
|
|
|
|
| 136 |
|
| 137 |
Use custom exception hierarchy (`src/utils/exceptions.py`):
|
| 138 |
|
| 139 |
+
- `DeepCriticalError` (base)
|
| 140 |
+
- `SearchError` → `RateLimitError`
|
| 141 |
+
- `JudgeError`
|
| 142 |
+
- `ConfigurationError`
|
| 143 |
|
| 144 |
### Error Handling Rules
|
| 145 |
|
|
|
|
| 199 |
1. Write failing test in `tests/unit/`
|
| 200 |
2. Implement in `src/`
|
| 201 |
3. Ensure test passes
|
| 202 |
+
4. Run `make check` (lint + typecheck + test)
|
| 203 |
|
| 204 |
### Test Examples
|
| 205 |
|
|
|
|
| 220 |
|
| 221 |
### Test Coverage
|
| 222 |
|
| 223 |
+
- Run `make test-cov` for coverage report
|
|
|
|
| 224 |
- Aim for >80% coverage on critical paths
|
| 225 |
- Exclude: `__init__.py`, `TYPE_CHECKING` blocks
|
| 226 |
|
|
|
|
| 264 |
- Lazy initialization for optional dependencies (e.g., embeddings, Modal)
|
| 265 |
- Check requirements before initialization:
|
| 266 |
|
| 267 |
+
```python
|
| 268 |
+
def check_magentic_requirements() -> None:
|
| 269 |
+
if not settings.has_openai_key:
|
| 270 |
+
raise ConfigurationError("Magentic requires OpenAI")
|
| 271 |
+
```
|
| 272 |
|
| 273 |
### State Management
|
| 274 |
|
|
|
|
| 280 |
|
| 281 |
Use `@lru_cache(maxsize=1)` for singletons:
|
| 282 |
|
| 283 |
+
```python
|
| 284 |
+
@lru_cache(maxsize=1)
|
| 285 |
+
def get_embedding_service() -> EmbeddingService:
|
| 286 |
+
return EmbeddingService()
|
| 287 |
+
```
|
| 288 |
|
| 289 |
- Lazy initialization to avoid requiring dependencies at import time
|
| 290 |
|
|
|
|
| 298 |
|
| 299 |
Example:
|
| 300 |
|
| 301 |
+
```python
|
| 302 |
+
async def search(self, query: str, max_results: int = 10) -> list[Evidence]:
|
| 303 |
+
"""Search PubMed and return evidence.
|
| 304 |
+
|
| 305 |
+
Args:
|
| 306 |
+
query: The search query string
|
| 307 |
+
max_results: Maximum number of results to return
|
| 308 |
+
|
| 309 |
+
Returns:
|
| 310 |
+
List of Evidence objects
|
| 311 |
+
|
| 312 |
+
Raises:
|
| 313 |
+
SearchError: If the search fails
|
| 314 |
+
RateLimitError: If we hit rate limits
|
| 315 |
+
"""
|
| 316 |
+
```
|
| 317 |
|
| 318 |
### Code Comments
|
| 319 |
|
|
|
|
| 410 |
|
| 411 |
## Pull Request Process
|
| 412 |
|
| 413 |
+
1. Ensure all checks pass: `make check`
|
| 414 |
2. Update documentation if needed
|
| 415 |
3. Add tests for new features
|
| 416 |
4. Update CHANGELOG if applicable
|
|
|
|
| 418 |
6. Address review feedback
|
| 419 |
7. Wait for approval before merging
|
| 420 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 421 |
## Questions?
|
| 422 |
|
| 423 |
+
- Open an issue on GitHub
|
| 424 |
+
- Check existing documentation
|
| 425 |
- Review code examples in the codebase
|
| 426 |
|
| 427 |
+
Thank you for contributing to DeepCritical!
|
| 428 |
+
|
docs/contributing/code-quality.md
CHANGED
|
@@ -1,6 +1,6 @@
|
|
| 1 |
# Code Quality & Documentation
|
| 2 |
|
| 3 |
-
This document outlines code quality standards and documentation requirements
|
| 4 |
|
| 5 |
## Linting
|
| 6 |
|
|
@@ -12,9 +12,6 @@ This document outlines code quality standards and documentation requirements for
|
|
| 12 |
- `PLR2004`: Magic values (statistical constants)
|
| 13 |
- `PLW0603`: Global statement (singleton pattern)
|
| 14 |
- `PLC0415`: Lazy imports for optional dependencies
|
| 15 |
-
- `E402`: Module level import not at top (needed for pytest.importorskip)
|
| 16 |
-
- `E501`: Line too long (ignore line length violations)
|
| 17 |
-
- `RUF100`: Unused noqa (version differences between local/CI)
|
| 18 |
|
| 19 |
## Type Checking
|
| 20 |
|
|
@@ -25,75 +22,12 @@ This document outlines code quality standards and documentation requirements for
|
|
| 25 |
|
| 26 |
## Pre-commit
|
| 27 |
|
| 28 |
-
|
| 29 |
-
|
| 30 |
-
|
| 31 |
-
|
| 32 |
-
```bash
|
| 33 |
-
# Install dependencies (includes pre-commit package)
|
| 34 |
-
uv sync --all-extras
|
| 35 |
-
|
| 36 |
-
# Set up git hooks (must be run separately)
|
| 37 |
-
uv run pre-commit install
|
| 38 |
-
```
|
| 39 |
-
|
| 40 |
-
**Note**: `uv sync --all-extras` installs the pre-commit package, but you must run `uv run pre-commit install` separately to set up the git hooks.
|
| 41 |
-
|
| 42 |
-
### Pre-commit Hooks
|
| 43 |
-
|
| 44 |
-
The following hooks run automatically on commit:
|
| 45 |
-
|
| 46 |
-
1. **ruff**: Lints code and fixes issues automatically
|
| 47 |
-
- Runs on: `src/` (excludes `tests/`, `reference_repos/`)
|
| 48 |
-
- Auto-fixes: Yes
|
| 49 |
-
|
| 50 |
-
2. **ruff-format**: Formats code with ruff
|
| 51 |
-
- Runs on: `src/` (excludes `tests/`, `reference_repos/`)
|
| 52 |
-
- Auto-fixes: Yes
|
| 53 |
-
|
| 54 |
-
3. **mypy**: Type checking
|
| 55 |
-
- Runs on: `src/` (excludes `folder/`)
|
| 56 |
-
- Additional dependencies: pydantic, pydantic-settings, tenacity, pydantic-ai
|
| 57 |
-
|
| 58 |
-
4. **pytest-unit**: Runs unit tests (excludes OpenAI and embedding_provider tests)
|
| 59 |
-
- Runs: `tests/unit/` with `-m "not openai and not embedding_provider"`
|
| 60 |
-
- Always runs: Yes (not just on changed files)
|
| 61 |
-
|
| 62 |
-
5. **pytest-local-embeddings**: Runs local embedding tests
|
| 63 |
-
- Runs: `tests/` with `-m "local_embeddings"`
|
| 64 |
-
- Always runs: Yes
|
| 65 |
-
|
| 66 |
-
### Manual Pre-commit Run
|
| 67 |
-
|
| 68 |
-
To run pre-commit hooks manually (without committing):
|
| 69 |
-
|
| 70 |
-
```bash
|
| 71 |
-
uv run pre-commit run --all-files
|
| 72 |
-
```
|
| 73 |
-
|
| 74 |
-
### Troubleshooting
|
| 75 |
-
|
| 76 |
-
- **Hooks failing**: Fix the issues shown in the output, then commit again
|
| 77 |
-
- **Skipping hooks**: Use `git commit --no-verify` (not recommended)
|
| 78 |
-
- **Hook not running**: Ensure hooks are installed with `uv run pre-commit install`
|
| 79 |
-
- **Type errors**: Check that all dependencies are installed with `uv sync --all-extras`
|
| 80 |
|
| 81 |
## Documentation
|
| 82 |
|
| 83 |
-
### Building Documentation
|
| 84 |
-
|
| 85 |
-
Documentation is built using MkDocs. Source files are in `docs/`, and the configuration is in `mkdocs.yml`.
|
| 86 |
-
|
| 87 |
-
```bash
|
| 88 |
-
# Build documentation
|
| 89 |
-
uv run mkdocs build
|
| 90 |
-
|
| 91 |
-
# Serve documentation locally (http://127.0.0.1:8000)
|
| 92 |
-
uv run mkdocs serve
|
| 93 |
-
```
|
| 94 |
-
|
| 95 |
-
The documentation site is published at: <https://deepcritical.github.io/GradioDemo/>
|
| 96 |
-
|
| 97 |
### Docstrings
|
| 98 |
|
| 99 |
- Google-style docstrings for all public functions
|
|
@@ -102,9 +36,22 @@ The documentation site is published at: <https://deepcritical.github.io/GradioDe
|
|
| 102 |
|
| 103 |
Example:
|
| 104 |
|
| 105 |
-
|
| 106 |
-
|
| 107 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 108 |
|
| 109 |
### Code Comments
|
| 110 |
|
|
@@ -118,3 +65,13 @@ Example:
|
|
| 118 |
|
| 119 |
- [Code Style](code-style.md) - Code style guidelines
|
| 120 |
- [Testing](testing.md) - Testing guidelines
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
# Code Quality & Documentation
|
| 2 |
|
| 3 |
+
This document outlines code quality standards and documentation requirements.
|
| 4 |
|
| 5 |
## Linting
|
| 6 |
|
|
|
|
| 12 |
- `PLR2004`: Magic values (statistical constants)
|
| 13 |
- `PLW0603`: Global statement (singleton pattern)
|
| 14 |
- `PLC0415`: Lazy imports for optional dependencies
|
|
|
|
|
|
|
|
|
|
| 15 |
|
| 16 |
## Type Checking
|
| 17 |
|
|
|
|
| 22 |
|
| 23 |
## Pre-commit
|
| 24 |
|
| 25 |
+
- Run `make check` before committing
|
| 26 |
+
- Must pass: lint + typecheck + test-cov
|
| 27 |
+
- Pre-commit hooks installed via `make install`
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 28 |
|
| 29 |
## Documentation
|
| 30 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 31 |
### Docstrings
|
| 32 |
|
| 33 |
- Google-style docstrings for all public functions
|
|
|
|
| 36 |
|
| 37 |
Example:
|
| 38 |
|
| 39 |
+
```python
|
| 40 |
+
async def search(self, query: str, max_results: int = 10) -> list[Evidence]:
|
| 41 |
+
"""Search PubMed and return evidence.
|
| 42 |
+
|
| 43 |
+
Args:
|
| 44 |
+
query: The search query string
|
| 45 |
+
max_results: Maximum number of results to return
|
| 46 |
+
|
| 47 |
+
Returns:
|
| 48 |
+
List of Evidence objects
|
| 49 |
+
|
| 50 |
+
Raises:
|
| 51 |
+
SearchError: If the search fails
|
| 52 |
+
RateLimitError: If we hit rate limits
|
| 53 |
+
"""
|
| 54 |
+
```
|
| 55 |
|
| 56 |
### Code Comments
|
| 57 |
|
|
|
|
| 65 |
|
| 66 |
- [Code Style](code-style.md) - Code style guidelines
|
| 67 |
- [Testing](testing.md) - Testing guidelines
|
| 68 |
+
|
| 69 |
+
|
| 70 |
+
|
| 71 |
+
|
| 72 |
+
|
| 73 |
+
|
| 74 |
+
|
| 75 |
+
|
| 76 |
+
|
| 77 |
+
|
docs/contributing/code-style.md
CHANGED
|
@@ -1,44 +1,6 @@
|
|
| 1 |
# Code Style & Conventions
|
| 2 |
|
| 3 |
-
This document outlines the code style and conventions for
|
| 4 |
-
|
| 5 |
-
## Package Manager
|
| 6 |
-
|
| 7 |
-
This project uses [`uv`](https://github.com/astral-sh/uv) as the package manager. All commands should be prefixed with `uv run` to ensure they run in the correct environment.
|
| 8 |
-
|
| 9 |
-
### Installation
|
| 10 |
-
|
| 11 |
-
```bash
|
| 12 |
-
# Install uv if you haven't already (recommended: standalone installer)
|
| 13 |
-
# Unix/macOS/Linux:
|
| 14 |
-
curl -LsSf https://astral.sh/uv/install.sh | sh
|
| 15 |
-
|
| 16 |
-
# Windows (PowerShell):
|
| 17 |
-
powershell -ExecutionPolicy ByPass -c "irm https://astral.sh/uv/install.ps1 | iex"
|
| 18 |
-
|
| 19 |
-
# Alternative: pipx install uv
|
| 20 |
-
# Or: pip install uv
|
| 21 |
-
|
| 22 |
-
# Sync all dependencies including dev extras
|
| 23 |
-
uv sync --all-extras
|
| 24 |
-
```
|
| 25 |
-
|
| 26 |
-
### Running Commands
|
| 27 |
-
|
| 28 |
-
All development commands should use `uv run` prefix:
|
| 29 |
-
|
| 30 |
-
```bash
|
| 31 |
-
# Instead of: pytest tests/
|
| 32 |
-
uv run pytest tests/
|
| 33 |
-
|
| 34 |
-
# Instead of: ruff check src
|
| 35 |
-
uv run ruff check src
|
| 36 |
-
|
| 37 |
-
# Instead of: mypy src
|
| 38 |
-
uv run mypy src
|
| 39 |
-
```
|
| 40 |
-
|
| 41 |
-
This ensures commands run in the correct virtual environment managed by `uv`.
|
| 42 |
|
| 43 |
## Type Safety
|
| 44 |
|
|
@@ -46,9 +8,11 @@ This ensures commands run in the correct virtual environment managed by `uv`.
|
|
| 46 |
- Use `mypy --strict` compliance (no `Any` unless absolutely necessary)
|
| 47 |
- Use `TYPE_CHECKING` imports for circular dependencies:
|
| 48 |
|
| 49 |
-
|
| 50 |
-
|
| 51 |
-
|
|
|
|
|
|
|
| 52 |
|
| 53 |
## Pydantic Models
|
| 54 |
|
|
@@ -81,3 +45,13 @@ result = await loop.run_in_executor(None, cpu_bound_function, args)
|
|
| 81 |
|
| 82 |
- [Error Handling](error-handling.md) - Error handling guidelines
|
| 83 |
- [Implementation Patterns](implementation-patterns.md) - Common patterns
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
# Code Style & Conventions
|
| 2 |
|
| 3 |
+
This document outlines the code style and conventions for DeepCritical.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 4 |
|
| 5 |
## Type Safety
|
| 6 |
|
|
|
|
| 8 |
- Use `mypy --strict` compliance (no `Any` unless absolutely necessary)
|
| 9 |
- Use `TYPE_CHECKING` imports for circular dependencies:
|
| 10 |
|
| 11 |
+
```python
|
| 12 |
+
from typing import TYPE_CHECKING
|
| 13 |
+
if TYPE_CHECKING:
|
| 14 |
+
from src.services.embeddings import EmbeddingService
|
| 15 |
+
```
|
| 16 |
|
| 17 |
## Pydantic Models
|
| 18 |
|
|
|
|
| 45 |
|
| 46 |
- [Error Handling](error-handling.md) - Error handling guidelines
|
| 47 |
- [Implementation Patterns](implementation-patterns.md) - Common patterns
|
| 48 |
+
|
| 49 |
+
|
| 50 |
+
|
| 51 |
+
|
| 52 |
+
|
| 53 |
+
|
| 54 |
+
|
| 55 |
+
|
| 56 |
+
|
| 57 |
+
|
docs/contributing/error-handling.md
CHANGED
|
@@ -1,14 +1,15 @@
|
|
| 1 |
# Error Handling & Logging
|
| 2 |
|
| 3 |
-
This document outlines error handling and logging conventions for
|
| 4 |
|
| 5 |
## Exception Hierarchy
|
| 6 |
|
| 7 |
Use custom exception hierarchy (`src/utils/exceptions.py`):
|
| 8 |
|
| 9 |
-
|
| 10 |
-
|
| 11 |
-
|
|
|
|
| 12 |
|
| 13 |
## Error Handling Rules
|
| 14 |
|
|
@@ -52,3 +53,13 @@ except httpx.HTTPError as e:
|
|
| 52 |
|
| 53 |
- [Code Style](code-style.md) - Code style guidelines
|
| 54 |
- [Testing](testing.md) - Testing guidelines
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
# Error Handling & Logging
|
| 2 |
|
| 3 |
+
This document outlines error handling and logging conventions for DeepCritical.
|
| 4 |
|
| 5 |
## Exception Hierarchy
|
| 6 |
|
| 7 |
Use custom exception hierarchy (`src/utils/exceptions.py`):
|
| 8 |
|
| 9 |
+
- `DeepCriticalError` (base)
|
| 10 |
+
- `SearchError` → `RateLimitError`
|
| 11 |
+
- `JudgeError`
|
| 12 |
+
- `ConfigurationError`
|
| 13 |
|
| 14 |
## Error Handling Rules
|
| 15 |
|
|
|
|
| 53 |
|
| 54 |
- [Code Style](code-style.md) - Code style guidelines
|
| 55 |
- [Testing](testing.md) - Testing guidelines
|
| 56 |
+
|
| 57 |
+
|
| 58 |
+
|
| 59 |
+
|
| 60 |
+
|
| 61 |
+
|
| 62 |
+
|
| 63 |
+
|
| 64 |
+
|
| 65 |
+
|
docs/contributing/implementation-patterns.md
CHANGED
|
@@ -1,6 +1,6 @@
|
|
| 1 |
# Implementation Patterns
|
| 2 |
|
| 3 |
-
This document outlines common implementation patterns used in
|
| 4 |
|
| 5 |
## Search Tools
|
| 6 |
|
|
@@ -40,9 +40,11 @@ class MySearchTool:
|
|
| 40 |
- Lazy initialization for optional dependencies (e.g., embeddings, Modal)
|
| 41 |
- Check requirements before initialization:
|
| 42 |
|
| 43 |
-
|
| 44 |
-
|
| 45 |
-
|
|
|
|
|
|
|
| 46 |
|
| 47 |
## State Management
|
| 48 |
|
|
@@ -54,9 +56,11 @@ class MySearchTool:
|
|
| 54 |
|
| 55 |
Use `@lru_cache(maxsize=1)` for singletons:
|
| 56 |
|
| 57 |
-
|
| 58 |
-
|
| 59 |
-
|
|
|
|
|
|
|
| 60 |
|
| 61 |
- Lazy initialization to avoid requiring dependencies at import time
|
| 62 |
|
|
@@ -65,3 +69,12 @@ Use `@lru_cache(maxsize=1)` for singletons:
|
|
| 65 |
- [Code Style](code-style.md) - Code style guidelines
|
| 66 |
- [Error Handling](error-handling.md) - Error handling guidelines
|
| 67 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
# Implementation Patterns
|
| 2 |
|
| 3 |
+
This document outlines common implementation patterns used in DeepCritical.
|
| 4 |
|
| 5 |
## Search Tools
|
| 6 |
|
|
|
|
| 40 |
- Lazy initialization for optional dependencies (e.g., embeddings, Modal)
|
| 41 |
- Check requirements before initialization:
|
| 42 |
|
| 43 |
+
```python
|
| 44 |
+
def check_magentic_requirements() -> None:
|
| 45 |
+
if not settings.has_openai_key:
|
| 46 |
+
raise ConfigurationError("Magentic requires OpenAI")
|
| 47 |
+
```
|
| 48 |
|
| 49 |
## State Management
|
| 50 |
|
|
|
|
| 56 |
|
| 57 |
Use `@lru_cache(maxsize=1)` for singletons:
|
| 58 |
|
| 59 |
+
```python
|
| 60 |
+
@lru_cache(maxsize=1)
|
| 61 |
+
def get_embedding_service() -> EmbeddingService:
|
| 62 |
+
return EmbeddingService()
|
| 63 |
+
```
|
| 64 |
|
| 65 |
- Lazy initialization to avoid requiring dependencies at import time
|
| 66 |
|
|
|
|
| 69 |
- [Code Style](code-style.md) - Code style guidelines
|
| 70 |
- [Error Handling](error-handling.md) - Error handling guidelines
|
| 71 |
|
| 72 |
+
|
| 73 |
+
|
| 74 |
+
|
| 75 |
+
|
| 76 |
+
|
| 77 |
+
|
| 78 |
+
|
| 79 |
+
|
| 80 |
+
|
docs/contributing/index.md
CHANGED
|
@@ -1,8 +1,6 @@
|
|
| 1 |
-
# Contributing to
|
| 2 |
|
| 3 |
-
Thank you for your interest in contributing to
|
| 4 |
-
|
| 5 |
-
> **Note on Project Names**: "The DETERMINATOR" is the product name, "DeepCritical" is the organization/project name, and "determinator" is the Python package name.
|
| 6 |
|
| 7 |
## Git Workflow
|
| 8 |
|
|
@@ -12,138 +10,44 @@ Thank you for your interest in contributing to The DETERMINATOR! This guide will
|
|
| 12 |
- **NEVER** push directly to `main` or `dev` on HuggingFace
|
| 13 |
- GitHub is source of truth; HuggingFace is for deployment
|
| 14 |
|
| 15 |
-
## Repository Information
|
| 16 |
-
|
| 17 |
-
- **GitHub Repository**: [`DeepCritical/GradioDemo`](https://github.com/DeepCritical/GradioDemo) (source of truth, PRs, code review)
|
| 18 |
-
- **HuggingFace Space**: [`DataQuests/DeepCritical`](https://huggingface.co/spaces/DataQuests/DeepCritical) (deployment/demo)
|
| 19 |
-
- **Package Name**: `determinator` (Python package name in `pyproject.toml`)
|
| 20 |
-
|
| 21 |
-
### Dual Repository Setup
|
| 22 |
-
|
| 23 |
-
This project uses a dual repository setup:
|
| 24 |
-
|
| 25 |
-
- **GitHub (`DeepCritical/GradioDemo`)**: Source of truth for code, PRs, and code review
|
| 26 |
-
- **HuggingFace (`DataQuests/DeepCritical`)**: Deployment target for the Gradio demo
|
| 27 |
-
|
| 28 |
-
#### Remote Configuration
|
| 29 |
-
|
| 30 |
-
When cloning, set up remotes as follows:
|
| 31 |
-
|
| 32 |
-
```bash
|
| 33 |
-
# Clone from GitHub
|
| 34 |
-
git clone https://github.com/DeepCritical/GradioDemo.git
|
| 35 |
-
cd GradioDemo
|
| 36 |
-
|
| 37 |
-
# Add HuggingFace remote (optional, for deployment)
|
| 38 |
-
git remote add huggingface-upstream https://huggingface.co/spaces/DataQuests/DeepCritical
|
| 39 |
-
```
|
| 40 |
-
|
| 41 |
-
**Important**: Never push directly to `main` or `dev` on HuggingFace. Always work through GitHub PRs. GitHub is the source of truth; HuggingFace is for deployment/demo only.
|
| 42 |
-
|
| 43 |
-
## Package Manager
|
| 44 |
-
|
| 45 |
-
This project uses [`uv`](https://github.com/astral-sh/uv) as the package manager. All commands should be prefixed with `uv run` to ensure they run in the correct environment.
|
| 46 |
-
|
| 47 |
-
### Installation
|
| 48 |
-
|
| 49 |
-
```bash
|
| 50 |
-
# Install uv if you haven't already (recommended: standalone installer)
|
| 51 |
-
# Unix/macOS/Linux:
|
| 52 |
-
curl -LsSf https://astral.sh/uv/install.sh | sh
|
| 53 |
-
|
| 54 |
-
# Windows (PowerShell):
|
| 55 |
-
powershell -ExecutionPolicy ByPass -c "irm https://astral.sh/uv/install.ps1 | iex"
|
| 56 |
-
|
| 57 |
-
# Alternative: pipx install uv
|
| 58 |
-
# Or: pip install uv
|
| 59 |
-
|
| 60 |
-
# Sync all dependencies including dev extras
|
| 61 |
-
uv sync --all-extras
|
| 62 |
-
|
| 63 |
-
# Install pre-commit hooks
|
| 64 |
-
uv run pre-commit install
|
| 65 |
-
```
|
| 66 |
-
|
| 67 |
## Development Commands
|
| 68 |
|
| 69 |
```bash
|
| 70 |
-
#
|
| 71 |
-
|
| 72 |
-
|
| 73 |
-
|
| 74 |
-
#
|
| 75 |
-
|
| 76 |
-
|
| 77 |
-
uv run mypy src # Type checking
|
| 78 |
-
uv run pytest --cov=src --cov-report=term-missing tests/unit/ -v -m "not openai" -p no:logfire # Tests with coverage
|
| 79 |
-
|
| 80 |
-
# Testing Commands
|
| 81 |
-
uv run pytest tests/unit/ -v -m "not openai" -p no:logfire # Run unit tests (excludes OpenAI tests)
|
| 82 |
-
uv run pytest tests/ -v -m "huggingface" -p no:logfire # Run HuggingFace tests
|
| 83 |
-
uv run pytest tests/ -v -p no:logfire # Run all tests
|
| 84 |
-
uv run pytest --cov=src --cov-report=term-missing tests/unit/ -v -m "not openai" -p no:logfire # Tests with terminal coverage
|
| 85 |
-
uv run pytest --cov=src --cov-report=html -p no:logfire # Generate HTML coverage report (opens htmlcov/index.html)
|
| 86 |
-
|
| 87 |
-
# Documentation Commands
|
| 88 |
-
uv run mkdocs build # Build documentation
|
| 89 |
-
uv run mkdocs serve # Serve documentation locally (http://127.0.0.1:8000)
|
| 90 |
```
|
| 91 |
|
| 92 |
-
### Test Markers
|
| 93 |
-
|
| 94 |
-
The project uses pytest markers to categorize tests. See [Testing Guidelines](testing.md) for details:
|
| 95 |
-
|
| 96 |
-
- `unit`: Unit tests (mocked, fast)
|
| 97 |
-
- `integration`: Integration tests (real APIs)
|
| 98 |
-
- `slow`: Slow tests
|
| 99 |
-
- `openai`: Tests requiring OpenAI API key
|
| 100 |
-
- `huggingface`: Tests requiring HuggingFace API key
|
| 101 |
-
- `embedding_provider`: Tests requiring API-based embedding providers
|
| 102 |
-
- `local_embeddings`: Tests using local embeddings
|
| 103 |
-
|
| 104 |
-
**Note**: The `-p no:logfire` flag disables the logfire plugin to avoid conflicts during testing.
|
| 105 |
-
|
| 106 |
## Getting Started
|
| 107 |
|
| 108 |
-
1. **Fork the repository** on GitHub
|
| 109 |
-
|
| 110 |
2. **Clone your fork**:
|
| 111 |
-
|
| 112 |
```bash
|
| 113 |
git clone https://github.com/yourusername/GradioDemo.git
|
| 114 |
cd GradioDemo
|
| 115 |
```
|
| 116 |
-
|
| 117 |
3. **Install dependencies**:
|
| 118 |
-
|
| 119 |
```bash
|
| 120 |
-
|
| 121 |
-
uv run pre-commit install
|
| 122 |
```
|
| 123 |
-
|
| 124 |
4. **Create a feature branch**:
|
| 125 |
-
|
| 126 |
```bash
|
| 127 |
git checkout -b yourname-feature-name
|
| 128 |
```
|
| 129 |
-
|
| 130 |
5. **Make your changes** following the guidelines below
|
| 131 |
-
|
| 132 |
6. **Run checks**:
|
| 133 |
-
|
| 134 |
```bash
|
| 135 |
-
|
| 136 |
-
uv run mypy src
|
| 137 |
-
uv run pytest --cov=src --cov-report=term-missing tests/unit/ -v -m "not openai" -p no:logfire
|
| 138 |
```
|
| 139 |
-
|
| 140 |
7. **Commit and push**:
|
| 141 |
-
|
| 142 |
```bash
|
| 143 |
git commit -m "Description of changes"
|
| 144 |
git push origin yourname-feature-name
|
| 145 |
```
|
| 146 |
-
|
| 147 |
8. **Create a pull request** on GitHub
|
| 148 |
|
| 149 |
## Development Guidelines
|
|
@@ -228,7 +132,7 @@ The project uses pytest markers to categorize tests. See [Testing Guidelines](te
|
|
| 228 |
|
| 229 |
## Pull Request Process
|
| 230 |
|
| 231 |
-
1. Ensure all checks pass: `
|
| 232 |
2. Update documentation if needed
|
| 233 |
3. Add tests for new features
|
| 234 |
4. Update CHANGELOG if applicable
|
|
@@ -236,19 +140,20 @@ The project uses pytest markers to categorize tests. See [Testing Guidelines](te
|
|
| 236 |
6. Address review feedback
|
| 237 |
7. Wait for approval before merging
|
| 238 |
|
| 239 |
-
## Project Structure
|
| 240 |
-
|
| 241 |
-
- `src/`: Main source code
|
| 242 |
-
- `tests/`: Test files (`unit/` and `integration/`)
|
| 243 |
-
- `docs/`: Documentation source files (MkDocs)
|
| 244 |
-
- `examples/`: Example usage scripts
|
| 245 |
-
- `pyproject.toml`: Project configuration and dependencies
|
| 246 |
-
- `.pre-commit-config.yaml`: Pre-commit hook configuration
|
| 247 |
-
|
| 248 |
## Questions?
|
| 249 |
|
| 250 |
-
- Open an issue on
|
| 251 |
-
- Check existing
|
| 252 |
- Review code examples in the codebase
|
| 253 |
|
| 254 |
-
Thank you for contributing to
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Contributing to DeepCritical
|
| 2 |
|
| 3 |
+
Thank you for your interest in contributing to DeepCritical! This guide will help you get started.
|
|
|
|
|
|
|
| 4 |
|
| 5 |
## Git Workflow
|
| 6 |
|
|
|
|
| 10 |
- **NEVER** push directly to `main` or `dev` on HuggingFace
|
| 11 |
- GitHub is source of truth; HuggingFace is for deployment
|
| 12 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 13 |
## Development Commands
|
| 14 |
|
| 15 |
```bash
|
| 16 |
+
make install # Install dependencies + pre-commit
|
| 17 |
+
make check # Lint + typecheck + test (MUST PASS)
|
| 18 |
+
make test # Run unit tests
|
| 19 |
+
make lint # Run ruff
|
| 20 |
+
make format # Format with ruff
|
| 21 |
+
make typecheck # Run mypy
|
| 22 |
+
make test-cov # Test with coverage
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 23 |
```
|
| 24 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 25 |
## Getting Started
|
| 26 |
|
| 27 |
+
1. **Fork the repository** on GitHub
|
|
|
|
| 28 |
2. **Clone your fork**:
|
|
|
|
| 29 |
```bash
|
| 30 |
git clone https://github.com/yourusername/GradioDemo.git
|
| 31 |
cd GradioDemo
|
| 32 |
```
|
|
|
|
| 33 |
3. **Install dependencies**:
|
|
|
|
| 34 |
```bash
|
| 35 |
+
make install
|
|
|
|
| 36 |
```
|
|
|
|
| 37 |
4. **Create a feature branch**:
|
|
|
|
| 38 |
```bash
|
| 39 |
git checkout -b yourname-feature-name
|
| 40 |
```
|
|
|
|
| 41 |
5. **Make your changes** following the guidelines below
|
|
|
|
| 42 |
6. **Run checks**:
|
|
|
|
| 43 |
```bash
|
| 44 |
+
make check
|
|
|
|
|
|
|
| 45 |
```
|
|
|
|
| 46 |
7. **Commit and push**:
|
|
|
|
| 47 |
```bash
|
| 48 |
git commit -m "Description of changes"
|
| 49 |
git push origin yourname-feature-name
|
| 50 |
```
|
|
|
|
| 51 |
8. **Create a pull request** on GitHub
|
| 52 |
|
| 53 |
## Development Guidelines
|
|
|
|
| 132 |
|
| 133 |
## Pull Request Process
|
| 134 |
|
| 135 |
+
1. Ensure all checks pass: `make check`
|
| 136 |
2. Update documentation if needed
|
| 137 |
3. Add tests for new features
|
| 138 |
4. Update CHANGELOG if applicable
|
|
|
|
| 140 |
6. Address review feedback
|
| 141 |
7. Wait for approval before merging
|
| 142 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 143 |
## Questions?
|
| 144 |
|
| 145 |
+
- Open an issue on GitHub
|
| 146 |
+
- Check existing documentation
|
| 147 |
- Review code examples in the codebase
|
| 148 |
|
| 149 |
+
Thank you for contributing to DeepCritical!
|
| 150 |
+
|
| 151 |
+
|
| 152 |
+
|
| 153 |
+
|
| 154 |
+
|
| 155 |
+
|
| 156 |
+
|
| 157 |
+
|
| 158 |
+
|
| 159 |
+
|
docs/contributing/prompt-engineering.md
CHANGED
|
@@ -53,3 +53,13 @@ This document outlines prompt engineering guidelines and citation validation rul
|
|
| 53 |
|
| 54 |
- [Code Quality](code-quality.md) - Code quality guidelines
|
| 55 |
- [Error Handling](error-handling.md) - Error handling guidelines
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 53 |
|
| 54 |
- [Code Quality](code-quality.md) - Code quality guidelines
|
| 55 |
- [Error Handling](error-handling.md) - Error handling guidelines
|
| 56 |
+
|
| 57 |
+
|
| 58 |
+
|
| 59 |
+
|
| 60 |
+
|
| 61 |
+
|
| 62 |
+
|
| 63 |
+
|
| 64 |
+
|
| 65 |
+
|
docs/contributing/testing.md
CHANGED
|
@@ -1,45 +1,12 @@
|
|
| 1 |
# Testing Requirements
|
| 2 |
|
| 3 |
-
This document outlines testing requirements and guidelines for
|
| 4 |
|
| 5 |
## Test Structure
|
| 6 |
|
| 7 |
- Unit tests in `tests/unit/` (mocked, fast)
|
| 8 |
- Integration tests in `tests/integration/` (real APIs, marked `@pytest.mark.integration`)
|
| 9 |
-
- Use markers: `unit`, `integration`, `slow
|
| 10 |
-
|
| 11 |
-
## Test Markers
|
| 12 |
-
|
| 13 |
-
The project uses pytest markers to categorize tests. These markers are defined in `pyproject.toml`:
|
| 14 |
-
|
| 15 |
-
- `@pytest.mark.unit`: Unit tests (mocked, fast) - Run with `-m "unit"`
|
| 16 |
-
- `@pytest.mark.integration`: Integration tests (real APIs) - Run with `-m "integration"`
|
| 17 |
-
- `@pytest.mark.slow`: Slow tests - Run with `-m "slow"`
|
| 18 |
-
- `@pytest.mark.openai`: Tests requiring OpenAI API key - Run with `-m "openai"` or exclude with `-m "not openai"`
|
| 19 |
-
- `@pytest.mark.huggingface`: Tests requiring HuggingFace API key or using HuggingFace models - Run with `-m "huggingface"`
|
| 20 |
-
- `@pytest.mark.embedding_provider`: Tests requiring API-based embedding providers (OpenAI, etc.) - Run with `-m "embedding_provider"`
|
| 21 |
-
- `@pytest.mark.local_embeddings`: Tests using local embeddings (sentence-transformers, ChromaDB) - Run with `-m "local_embeddings"`
|
| 22 |
-
|
| 23 |
-
### Running Tests by Marker
|
| 24 |
-
|
| 25 |
-
```bash
|
| 26 |
-
# Run only unit tests (excludes OpenAI tests by default)
|
| 27 |
-
uv run pytest tests/unit/ -v -m "not openai" -p no:logfire
|
| 28 |
-
|
| 29 |
-
# Run HuggingFace tests
|
| 30 |
-
uv run pytest tests/ -v -m "huggingface" -p no:logfire
|
| 31 |
-
|
| 32 |
-
# Run all tests
|
| 33 |
-
uv run pytest tests/ -v -p no:logfire
|
| 34 |
-
|
| 35 |
-
# Run only local embedding tests
|
| 36 |
-
uv run pytest tests/ -v -m "local_embeddings" -p no:logfire
|
| 37 |
-
|
| 38 |
-
# Exclude slow tests
|
| 39 |
-
uv run pytest tests/ -v -m "not slow" -p no:logfire
|
| 40 |
-
```
|
| 41 |
-
|
| 42 |
-
**Note**: The `-p no:logfire` flag disables the logfire plugin to avoid conflicts during testing.
|
| 43 |
|
| 44 |
## Mocking
|
| 45 |
|
|
@@ -53,20 +20,7 @@ uv run pytest tests/ -v -m "not slow" -p no:logfire
|
|
| 53 |
1. Write failing test in `tests/unit/`
|
| 54 |
2. Implement in `src/`
|
| 55 |
3. Ensure test passes
|
| 56 |
-
4. Run
|
| 57 |
-
|
| 58 |
-
### Test Command Examples
|
| 59 |
-
|
| 60 |
-
```bash
|
| 61 |
-
# Run unit tests (default, excludes OpenAI tests)
|
| 62 |
-
uv run pytest tests/unit/ -v -m "not openai" -p no:logfire
|
| 63 |
-
|
| 64 |
-
# Run HuggingFace tests
|
| 65 |
-
uv run pytest tests/ -v -m "huggingface" -p no:logfire
|
| 66 |
-
|
| 67 |
-
# Run all tests
|
| 68 |
-
uv run pytest tests/ -v -p no:logfire
|
| 69 |
-
```
|
| 70 |
|
| 71 |
## Test Examples
|
| 72 |
|
|
@@ -87,29 +41,21 @@ async def test_real_pubmed_search():
|
|
| 87 |
|
| 88 |
## Test Coverage
|
| 89 |
|
| 90 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 91 |
|
| 92 |
-
```bash
|
| 93 |
-
uv run pytest --cov=src --cov-report=term-missing tests/unit/ -v -m "not openai" -p no:logfire
|
| 94 |
-
```
|
| 95 |
|
| 96 |
-
This shows coverage with missing lines highlighted in the terminal output.
|
| 97 |
|
| 98 |
-
### HTML Coverage Report
|
| 99 |
|
| 100 |
-
```bash
|
| 101 |
-
uv run pytest --cov=src --cov-report=html -p no:logfire
|
| 102 |
-
```
|
| 103 |
|
| 104 |
-
This generates an HTML coverage report in `htmlcov/index.html`. Open this file in your browser to see detailed coverage information.
|
| 105 |
|
| 106 |
-
### Coverage Goals
|
| 107 |
|
| 108 |
-
- Aim for >80% coverage on critical paths
|
| 109 |
-
- Exclude: `__init__.py`, `TYPE_CHECKING` blocks
|
| 110 |
-
- Coverage configuration is in `pyproject.toml` under `[tool.coverage.*]`
|
| 111 |
|
| 112 |
-
## See Also
|
| 113 |
|
| 114 |
-
- [Code Style](code-style.md) - Code style guidelines
|
| 115 |
-
- [Implementation Patterns](implementation-patterns.md) - Common patterns
|
|
|
|
| 1 |
# Testing Requirements
|
| 2 |
|
| 3 |
+
This document outlines testing requirements and guidelines for DeepCritical.
|
| 4 |
|
| 5 |
## Test Structure
|
| 6 |
|
| 7 |
- Unit tests in `tests/unit/` (mocked, fast)
|
| 8 |
- Integration tests in `tests/integration/` (real APIs, marked `@pytest.mark.integration`)
|
| 9 |
+
- Use markers: `unit`, `integration`, `slow`
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 10 |
|
| 11 |
## Mocking
|
| 12 |
|
|
|
|
| 20 |
1. Write failing test in `tests/unit/`
|
| 21 |
2. Implement in `src/`
|
| 22 |
3. Ensure test passes
|
| 23 |
+
4. Run `make check` (lint + typecheck + test)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 24 |
|
| 25 |
## Test Examples
|
| 26 |
|
|
|
|
| 41 |
|
| 42 |
## Test Coverage
|
| 43 |
|
| 44 |
+
- Run `make test-cov` for coverage report
|
| 45 |
+
- Aim for >80% coverage on critical paths
|
| 46 |
+
- Exclude: `__init__.py`, `TYPE_CHECKING` blocks
|
| 47 |
+
|
| 48 |
+
## See Also
|
| 49 |
+
|
| 50 |
+
- [Code Style](code-style.md) - Code style guidelines
|
| 51 |
+
- [Implementation Patterns](implementation-patterns.md) - Common patterns
|
| 52 |
+
|
| 53 |
|
|
|
|
|
|
|
|
|
|
| 54 |
|
|
|
|
| 55 |
|
|
|
|
| 56 |
|
|
|
|
|
|
|
|
|
|
| 57 |
|
|
|
|
| 58 |
|
|
|
|
| 59 |
|
|
|
|
|
|
|
|
|
|
| 60 |
|
|
|
|
| 61 |
|
|
|
|
|
|
docs/getting-started/examples.md
CHANGED
|
@@ -1,6 +1,6 @@
|
|
| 1 |
# Examples
|
| 2 |
|
| 3 |
-
This page provides examples of using
|
| 4 |
|
| 5 |
## Basic Research Query
|
| 6 |
|
|
@@ -11,7 +11,7 @@ This page provides examples of using The DETERMINATOR for various research tasks
|
|
| 11 |
What are the latest treatments for Alzheimer's disease?
|
| 12 |
```
|
| 13 |
|
| 14 |
-
**What
|
| 15 |
1. Searches PubMed for recent papers
|
| 16 |
2. Searches ClinicalTrials.gov for active trials
|
| 17 |
3. Evaluates evidence quality
|
|
@@ -24,8 +24,7 @@ What are the latest treatments for Alzheimer's disease?
|
|
| 24 |
What clinical trials are investigating metformin for cancer prevention?
|
| 25 |
```
|
| 26 |
|
| 27 |
-
**What
|
| 28 |
-
|
| 29 |
1. Searches ClinicalTrials.gov for relevant trials
|
| 30 |
2. Searches PubMed for supporting literature
|
| 31 |
3. Provides trial details and status
|
|
@@ -36,13 +35,12 @@ What clinical trials are investigating metformin for cancer prevention?
|
|
| 36 |
### Example 3: Comprehensive Review
|
| 37 |
|
| 38 |
**Query**:
|
| 39 |
-
|
| 40 |
```
|
| 41 |
Review the evidence for using metformin as an anti-aging intervention,
|
| 42 |
including clinical trials, mechanisms of action, and safety profile.
|
| 43 |
```
|
| 44 |
|
| 45 |
-
**What
|
| 46 |
1. Uses deep research mode (multi-section)
|
| 47 |
2. Searches multiple sources in parallel
|
| 48 |
3. Generates sections on:
|
|
@@ -58,7 +56,7 @@ including clinical trials, mechanisms of action, and safety profile.
|
|
| 58 |
Test the hypothesis that regular exercise reduces Alzheimer's disease risk.
|
| 59 |
```
|
| 60 |
|
| 61 |
-
**What
|
| 62 |
1. Generates testable hypotheses
|
| 63 |
2. Searches for supporting/contradicting evidence
|
| 64 |
3. Performs statistical analysis (if Modal configured)
|
|
@@ -102,13 +100,13 @@ from src.agent_factory.judges import create_judge_handler
|
|
| 102 |
# Create orchestrator
|
| 103 |
search_handler = SearchHandler()
|
| 104 |
judge_handler = create_judge_handler()
|
| 105 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 106 |
|
| 107 |
-
<!--codeinclude-->
|
| 108 |
-
[Create Orchestrator](../src/orchestrator_factory.py) start_line:44 end_line:66
|
| 109 |
-
<!--/codeinclude-->
|
| 110 |
-
|
| 111 |
-
```python
|
| 112 |
# Run research query
|
| 113 |
query = "What are the latest treatments for Alzheimer's disease?"
|
| 114 |
async for event in orchestrator.run(query):
|
|
@@ -136,13 +134,13 @@ Single-loop research with search-judge-synthesize cycles:
|
|
| 136 |
|
| 137 |
```python
|
| 138 |
from src.orchestrator.research_flow import IterativeResearchFlow
|
| 139 |
-
```
|
| 140 |
|
| 141 |
-
|
| 142 |
-
|
| 143 |
-
|
|
|
|
|
|
|
| 144 |
|
| 145 |
-
```python
|
| 146 |
async for event in flow.run(query):
|
| 147 |
# Handle events
|
| 148 |
pass
|
|
@@ -154,13 +152,13 @@ Multi-section parallel research:
|
|
| 154 |
|
| 155 |
```python
|
| 156 |
from src.orchestrator.research_flow import DeepResearchFlow
|
| 157 |
-
```
|
| 158 |
|
| 159 |
-
|
| 160 |
-
|
| 161 |
-
|
|
|
|
|
|
|
| 162 |
|
| 163 |
-
```python
|
| 164 |
async for event in flow.run(query):
|
| 165 |
# Handle events
|
| 166 |
pass
|
|
@@ -193,6 +191,15 @@ USE_GRAPH_EXECUTION=true
|
|
| 193 |
## Next Steps
|
| 194 |
|
| 195 |
- Read the [Configuration Guide](../configuration/index.md) for all options
|
| 196 |
-
- Explore the [Architecture Documentation](../architecture/
|
| 197 |
- Check out the [API Reference](../api/agents.md) for programmatic usage
|
| 198 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
# Examples
|
| 2 |
|
| 3 |
+
This page provides examples of using DeepCritical for various research tasks.
|
| 4 |
|
| 5 |
## Basic Research Query
|
| 6 |
|
|
|
|
| 11 |
What are the latest treatments for Alzheimer's disease?
|
| 12 |
```
|
| 13 |
|
| 14 |
+
**What DeepCritical Does**:
|
| 15 |
1. Searches PubMed for recent papers
|
| 16 |
2. Searches ClinicalTrials.gov for active trials
|
| 17 |
3. Evaluates evidence quality
|
|
|
|
| 24 |
What clinical trials are investigating metformin for cancer prevention?
|
| 25 |
```
|
| 26 |
|
| 27 |
+
**What DeepCritical Does**:
|
|
|
|
| 28 |
1. Searches ClinicalTrials.gov for relevant trials
|
| 29 |
2. Searches PubMed for supporting literature
|
| 30 |
3. Provides trial details and status
|
|
|
|
| 35 |
### Example 3: Comprehensive Review
|
| 36 |
|
| 37 |
**Query**:
|
|
|
|
| 38 |
```
|
| 39 |
Review the evidence for using metformin as an anti-aging intervention,
|
| 40 |
including clinical trials, mechanisms of action, and safety profile.
|
| 41 |
```
|
| 42 |
|
| 43 |
+
**What DeepCritical Does**:
|
| 44 |
1. Uses deep research mode (multi-section)
|
| 45 |
2. Searches multiple sources in parallel
|
| 46 |
3. Generates sections on:
|
|
|
|
| 56 |
Test the hypothesis that regular exercise reduces Alzheimer's disease risk.
|
| 57 |
```
|
| 58 |
|
| 59 |
+
**What DeepCritical Does**:
|
| 60 |
1. Generates testable hypotheses
|
| 61 |
2. Searches for supporting/contradicting evidence
|
| 62 |
3. Performs statistical analysis (if Modal configured)
|
|
|
|
| 100 |
# Create orchestrator
|
| 101 |
search_handler = SearchHandler()
|
| 102 |
judge_handler = create_judge_handler()
|
| 103 |
+
orchestrator = create_orchestrator(
|
| 104 |
+
search_handler=search_handler,
|
| 105 |
+
judge_handler=judge_handler,
|
| 106 |
+
config={},
|
| 107 |
+
mode="advanced"
|
| 108 |
+
)
|
| 109 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 110 |
# Run research query
|
| 111 |
query = "What are the latest treatments for Alzheimer's disease?"
|
| 112 |
async for event in orchestrator.run(query):
|
|
|
|
| 134 |
|
| 135 |
```python
|
| 136 |
from src.orchestrator.research_flow import IterativeResearchFlow
|
|
|
|
| 137 |
|
| 138 |
+
flow = IterativeResearchFlow(
|
| 139 |
+
search_handler=search_handler,
|
| 140 |
+
judge_handler=judge_handler,
|
| 141 |
+
use_graph=False
|
| 142 |
+
)
|
| 143 |
|
|
|
|
| 144 |
async for event in flow.run(query):
|
| 145 |
# Handle events
|
| 146 |
pass
|
|
|
|
| 152 |
|
| 153 |
```python
|
| 154 |
from src.orchestrator.research_flow import DeepResearchFlow
|
|
|
|
| 155 |
|
| 156 |
+
flow = DeepResearchFlow(
|
| 157 |
+
search_handler=search_handler,
|
| 158 |
+
judge_handler=judge_handler,
|
| 159 |
+
use_graph=True
|
| 160 |
+
)
|
| 161 |
|
|
|
|
| 162 |
async for event in flow.run(query):
|
| 163 |
# Handle events
|
| 164 |
pass
|
|
|
|
| 191 |
## Next Steps
|
| 192 |
|
| 193 |
- Read the [Configuration Guide](../configuration/index.md) for all options
|
| 194 |
+
- Explore the [Architecture Documentation](../architecture/graph-orchestration.md)
|
| 195 |
- Check out the [API Reference](../api/agents.md) for programmatic usage
|
| 196 |
|
| 197 |
+
|
| 198 |
+
|
| 199 |
+
|
| 200 |
+
|
| 201 |
+
|
| 202 |
+
|
| 203 |
+
|
| 204 |
+
|
| 205 |
+
|
docs/getting-started/installation.md
CHANGED
|
@@ -12,29 +12,12 @@ This guide will help you install and set up DeepCritical on your system.
|
|
| 12 |
|
| 13 |
### 1. Install uv (Recommended)
|
| 14 |
|
| 15 |
-
`uv` is a fast Python package installer and resolver. Install it
|
| 16 |
|
| 17 |
-
**Unix/macOS/Linux:**
|
| 18 |
```bash
|
| 19 |
-
curl -LsSf https://astral.sh/uv/install.sh | sh
|
| 20 |
-
```
|
| 21 |
-
|
| 22 |
-
**Windows (PowerShell):**
|
| 23 |
-
```powershell
|
| 24 |
-
powershell -ExecutionPolicy ByPass -c "irm https://astral.sh/uv/install.ps1 | iex"
|
| 25 |
-
```
|
| 26 |
-
|
| 27 |
-
**Alternative methods:**
|
| 28 |
-
```bash
|
| 29 |
-
# Using pipx (recommended if you have pipx installed)
|
| 30 |
-
pipx install uv
|
| 31 |
-
|
| 32 |
-
# Or using pip
|
| 33 |
pip install uv
|
| 34 |
```
|
| 35 |
|
| 36 |
-
After installation, restart your terminal or add `~/.cargo/bin` to your PATH.
|
| 37 |
-
|
| 38 |
### 2. Clone the Repository
|
| 39 |
|
| 40 |
```bash
|
|
@@ -150,3 +133,12 @@ uv run pre-commit install
|
|
| 150 |
- Learn about [MCP Integration](mcp-integration.md)
|
| 151 |
- Explore [Examples](examples.md)
|
| 152 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 12 |
|
| 13 |
### 1. Install uv (Recommended)
|
| 14 |
|
| 15 |
+
`uv` is a fast Python package installer and resolver. Install it with:
|
| 16 |
|
|
|
|
| 17 |
```bash
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 18 |
pip install uv
|
| 19 |
```
|
| 20 |
|
|
|
|
|
|
|
| 21 |
### 2. Clone the Repository
|
| 22 |
|
| 23 |
```bash
|
|
|
|
| 133 |
- Learn about [MCP Integration](mcp-integration.md)
|
| 134 |
- Explore [Examples](examples.md)
|
| 135 |
|
| 136 |
+
|
| 137 |
+
|
| 138 |
+
|
| 139 |
+
|
| 140 |
+
|
| 141 |
+
|
| 142 |
+
|
| 143 |
+
|
| 144 |
+
|
docs/getting-started/mcp-integration.md
CHANGED
|
@@ -1,10 +1,10 @@
|
|
| 1 |
# MCP Integration
|
| 2 |
|
| 3 |
-
|
| 4 |
|
| 5 |
## What is MCP?
|
| 6 |
|
| 7 |
-
The Model Context Protocol (MCP) is a standard for connecting AI assistants to external tools and data sources.
|
| 8 |
|
| 9 |
## MCP Server URL
|
| 10 |
|
|
@@ -33,14 +33,14 @@ http://localhost:7860/gradio_api/mcp/
|
|
| 33 |
~/.config/Claude/claude_desktop_config.json
|
| 34 |
```
|
| 35 |
|
| 36 |
-
### 2. Add
|
| 37 |
|
| 38 |
Edit `claude_desktop_config.json` and add:
|
| 39 |
|
| 40 |
```json
|
| 41 |
{
|
| 42 |
"mcpServers": {
|
| 43 |
-
"
|
| 44 |
"url": "http://localhost:7860/gradio_api/mcp/"
|
| 45 |
}
|
| 46 |
}
|
|
@@ -53,7 +53,7 @@ Close and restart Claude Desktop for changes to take effect.
|
|
| 53 |
|
| 54 |
### 4. Verify Connection
|
| 55 |
|
| 56 |
-
In Claude Desktop, you should see
|
| 57 |
- `search_pubmed`
|
| 58 |
- `search_clinical_trials`
|
| 59 |
- `search_biorxiv`
|
|
@@ -198,6 +198,14 @@ You can configure multiple DeepCritical instances:
|
|
| 198 |
|
| 199 |
- Learn about [Configuration](../configuration/index.md) for advanced settings
|
| 200 |
- Explore [Examples](examples.md) for use cases
|
| 201 |
-
- Read the [Architecture Documentation](../architecture/
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 202 |
|
| 203 |
|
|
|
|
| 1 |
# MCP Integration
|
| 2 |
|
| 3 |
+
DeepCritical exposes a Model Context Protocol (MCP) server, allowing you to use its search tools directly from Claude Desktop or other MCP clients.
|
| 4 |
|
| 5 |
## What is MCP?
|
| 6 |
|
| 7 |
+
The Model Context Protocol (MCP) is a standard for connecting AI assistants to external tools and data sources. DeepCritical implements an MCP server that exposes its search capabilities as MCP tools.
|
| 8 |
|
| 9 |
## MCP Server URL
|
| 10 |
|
|
|
|
| 33 |
~/.config/Claude/claude_desktop_config.json
|
| 34 |
```
|
| 35 |
|
| 36 |
+
### 2. Add DeepCritical Server
|
| 37 |
|
| 38 |
Edit `claude_desktop_config.json` and add:
|
| 39 |
|
| 40 |
```json
|
| 41 |
{
|
| 42 |
"mcpServers": {
|
| 43 |
+
"deepcritical": {
|
| 44 |
"url": "http://localhost:7860/gradio_api/mcp/"
|
| 45 |
}
|
| 46 |
}
|
|
|
|
| 53 |
|
| 54 |
### 4. Verify Connection
|
| 55 |
|
| 56 |
+
In Claude Desktop, you should see DeepCritical tools available:
|
| 57 |
- `search_pubmed`
|
| 58 |
- `search_clinical_trials`
|
| 59 |
- `search_biorxiv`
|
|
|
|
| 198 |
|
| 199 |
- Learn about [Configuration](../configuration/index.md) for advanced settings
|
| 200 |
- Explore [Examples](examples.md) for use cases
|
| 201 |
+
- Read the [Architecture Documentation](../architecture/graph-orchestration.md)
|
| 202 |
+
|
| 203 |
+
|
| 204 |
+
|
| 205 |
+
|
| 206 |
+
|
| 207 |
+
|
| 208 |
+
|
| 209 |
+
|
| 210 |
|
| 211 |
|
docs/getting-started/quick-start.md
CHANGED
|
@@ -1,47 +1,11 @@
|
|
| 1 |
-
#
|
| 2 |
|
| 3 |
-
|
| 4 |
-
|
| 5 |
-
```bash
|
| 6 |
-
docker run -it -p 7860:7860 --platform=linux/amd64 \
|
| 7 |
-
-e DB_KEY="YOUR_VALUE_HERE" \
|
| 8 |
-
-e SERP_API="YOUR_VALUE_HERE" \
|
| 9 |
-
-e INFERENCE_API="YOUR_VALUE_HERE" \
|
| 10 |
-
-e MODAL_TOKEN_ID="YOUR_VALUE_HERE" \
|
| 11 |
-
-e MODAL_TOKEN_SECRET="YOUR_VALUE_HERE" \
|
| 12 |
-
-e NCBI_API_KEY="YOUR_VALUE_HERE" \
|
| 13 |
-
-e SERPER_API_KEY="YOUR_VALUE_HERE" \
|
| 14 |
-
-e CHROMA_DB_PATH="./chroma_db" \
|
| 15 |
-
-e CHROMA_DB_HOST="localhost" \
|
| 16 |
-
-e CHROMA_DB_PORT="8000" \
|
| 17 |
-
-e RAG_COLLECTION_NAME="deepcritical_evidence" \
|
| 18 |
-
-e RAG_SIMILARITY_TOP_K="5" \
|
| 19 |
-
-e RAG_AUTO_INGEST="true" \
|
| 20 |
-
-e USE_GRAPH_EXECUTION="false" \
|
| 21 |
-
-e DEFAULT_TOKEN_LIMIT="100000" \
|
| 22 |
-
-e DEFAULT_TIME_LIMIT_MINUTES="10" \
|
| 23 |
-
-e DEFAULT_ITERATIONS_LIMIT="10" \
|
| 24 |
-
-e WEB_SEARCH_PROVIDER="duckduckgo" \
|
| 25 |
-
-e MAX_ITERATIONS="10" \
|
| 26 |
-
-e SEARCH_TIMEOUT="30" \
|
| 27 |
-
-e LOG_LEVEL="DEBUG" \
|
| 28 |
-
-e EMBEDDING_PROVIDER="local" \
|
| 29 |
-
-e OPENAI_EMBEDDING_MODEL="text-embedding-3-small" \
|
| 30 |
-
-e LOCAL_EMBEDDING_MODEL="BAAI/bge-small-en-v1.5" \
|
| 31 |
-
-e HUGGINGFACE_EMBEDDING_MODEL="sentence-transformers/all-MiniLM-L6-v2" \
|
| 32 |
-
-e HF_FALLBACK_MODELS="Qwen/Qwen3-Next-80B-A3B-Thinking,Qwen/Qwen3-Next-80B-A3B-Instruct,meta-llama/Llama-3.3-70B-Instruct,meta-llama/Llama-3.1-8B-Instruct,HuggingFaceH4/zephyr-7b-beta,Qwen/Qwen2-7B-Instruct" \
|
| 33 |
-
-e HUGGINGFACE_MODEL="Qwen/Qwen3-Next-80B-A3B-Thinking" \
|
| 34 |
-
registry.hf.space/dataquests-deepcritical:latest python src/app.py
|
| 35 |
-
```
|
| 36 |
-
|
| 37 |
-
## Quick start guide
|
| 38 |
-
|
| 39 |
-
Get up and running with The DETERMINATOR in minutes.
|
| 40 |
|
| 41 |
## Start the Application
|
| 42 |
|
| 43 |
```bash
|
| 44 |
-
gradio src/app.py
|
| 45 |
```
|
| 46 |
|
| 47 |
Open your browser to `http://localhost:7860`.
|
|
@@ -135,8 +99,17 @@ What are the active clinical trials investigating Alzheimer's disease treatments
|
|
| 135 |
|
| 136 |
## Next Steps
|
| 137 |
|
| 138 |
-
- Learn about [MCP Integration](mcp-integration.md) to use
|
| 139 |
- Explore [Examples](examples.md) for more use cases
|
| 140 |
- Read the [Configuration Guide](../configuration/index.md) for advanced settings
|
| 141 |
-
- Check out the [Architecture Documentation](../architecture/
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 142 |
|
|
|
|
| 1 |
+
# Quick Start Guide
|
| 2 |
|
| 3 |
+
Get up and running with DeepCritical in minutes.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 4 |
|
| 5 |
## Start the Application
|
| 6 |
|
| 7 |
```bash
|
| 8 |
+
uv run gradio run src/app.py
|
| 9 |
```
|
| 10 |
|
| 11 |
Open your browser to `http://localhost:7860`.
|
|
|
|
| 99 |
|
| 100 |
## Next Steps
|
| 101 |
|
| 102 |
+
- Learn about [MCP Integration](mcp-integration.md) to use DeepCritical from Claude Desktop
|
| 103 |
- Explore [Examples](examples.md) for more use cases
|
| 104 |
- Read the [Configuration Guide](../configuration/index.md) for advanced settings
|
| 105 |
+
- Check out the [Architecture Documentation](../architecture/graph-orchestration.md) to understand how it works
|
| 106 |
+
|
| 107 |
+
|
| 108 |
+
|
| 109 |
+
|
| 110 |
+
|
| 111 |
+
|
| 112 |
+
|
| 113 |
+
|
| 114 |
+
|
| 115 |
|
docs/index.md
CHANGED
|
@@ -1,24 +1,12 @@
|
|
| 1 |
-
#
|
| 2 |
|
| 3 |
-
**
|
| 4 |
|
| 5 |
-
|
| 6 |
-
|
| 7 |
-
**Key Features**:
|
| 8 |
-
- **Generalist**: Handles queries from any domain (medical, technical, business, scientific, etc.)
|
| 9 |
-
- **Automatic Source Selection**: Automatically determines if medical knowledge sources (PubMed, ClinicalTrials.gov) are needed
|
| 10 |
-
- **Multi-Source Search**: Web search, PubMed, ClinicalTrials.gov, Europe PMC, RAG
|
| 11 |
-
- **Iterative Refinement**: Continues searching and refining until precise answers are found
|
| 12 |
-
- **Evidence Synthesis**: Comprehensive reports with proper citations
|
| 13 |
-
|
| 14 |
-
**Important**: The DETERMINATOR is a research tool that synthesizes evidence. It cannot provide medical advice or answer medical questions directly.
|
| 15 |
|
| 16 |
## Features
|
| 17 |
|
| 18 |
-
- **
|
| 19 |
-
- **Automatic Medical Detection**: Automatically determines if medical knowledge sources are needed
|
| 20 |
-
- **Multi-Source Search**: Web search, PubMed, ClinicalTrials.gov, Europe PMC (includes bioRxiv/medRxiv), RAG
|
| 21 |
-
- **Iterative Until Precise**: Stops at nothing until finding precise answers (only stops at configured limits)
|
| 22 |
- **MCP Integration**: Use our tools from Claude Desktop or any MCP client
|
| 23 |
- **HuggingFace OAuth**: Sign in with your HuggingFace account to automatically use your API token
|
| 24 |
- **Modal Sandbox**: Secure execution of AI-generated statistical code
|
|
@@ -30,15 +18,8 @@ The DETERMINATOR is a powerful generalist deep research agent system that uses i
|
|
| 30 |
## Quick Start
|
| 31 |
|
| 32 |
```bash
|
| 33 |
-
# Install uv if you haven't already
|
| 34 |
-
|
| 35 |
-
curl -LsSf https://astral.sh/uv/install.sh | sh
|
| 36 |
-
|
| 37 |
-
# Windows (PowerShell):
|
| 38 |
-
powershell -ExecutionPolicy ByPass -c "irm https://astral.sh/uv/install.ps1 | iex"
|
| 39 |
-
|
| 40 |
-
# Alternative: pipx install uv
|
| 41 |
-
# Or: pip install uv
|
| 42 |
|
| 43 |
# Sync dependencies
|
| 44 |
uv sync
|
|
@@ -53,9 +34,9 @@ For detailed installation and setup instructions, see the [Getting Started Guide
|
|
| 53 |
|
| 54 |
## Architecture
|
| 55 |
|
| 56 |
-
|
| 57 |
|
| 58 |
-
1. **Search Slice**: Retrieving evidence from
|
| 59 |
2. **Judge Slice**: Evaluating evidence quality using LLMs
|
| 60 |
3. **Orchestrator Slice**: Managing the research loop and UI
|
| 61 |
|
|
@@ -73,7 +54,7 @@ Learn more about the [Architecture](overview/architecture.md).
|
|
| 73 |
- [Getting Started](getting-started/installation.md) - Installation and setup
|
| 74 |
- [Configuration](configuration/index.md) - Configuration guide
|
| 75 |
- [API Reference](api/agents.md) - API documentation
|
| 76 |
-
- [Contributing](contributing
|
| 77 |
|
| 78 |
## Links
|
| 79 |
|
|
|
|
| 1 |
+
# DeepCritical
|
| 2 |
|
| 3 |
+
**AI-Native Drug Repurposing Research Agent**
|
| 4 |
|
| 5 |
+
DeepCritical is a deep research agent system that uses iterative search-and-judge loops to comprehensively answer research questions. The system supports multiple orchestration patterns, graph-based execution, parallel research workflows, and long-running task management with real-time streaming.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 6 |
|
| 7 |
## Features
|
| 8 |
|
| 9 |
+
- **Multi-Source Search**: PubMed, ClinicalTrials.gov, Europe PMC (includes bioRxiv/medRxiv)
|
|
|
|
|
|
|
|
|
|
| 10 |
- **MCP Integration**: Use our tools from Claude Desktop or any MCP client
|
| 11 |
- **HuggingFace OAuth**: Sign in with your HuggingFace account to automatically use your API token
|
| 12 |
- **Modal Sandbox**: Secure execution of AI-generated statistical code
|
|
|
|
| 18 |
## Quick Start
|
| 19 |
|
| 20 |
```bash
|
| 21 |
+
# Install uv if you haven't already
|
| 22 |
+
pip install uv
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 23 |
|
| 24 |
# Sync dependencies
|
| 25 |
uv sync
|
|
|
|
| 34 |
|
| 35 |
## Architecture
|
| 36 |
|
| 37 |
+
DeepCritical uses a Vertical Slice Architecture:
|
| 38 |
|
| 39 |
+
1. **Search Slice**: Retrieving evidence from PubMed, ClinicalTrials.gov, and Europe PMC
|
| 40 |
2. **Judge Slice**: Evaluating evidence quality using LLMs
|
| 41 |
3. **Orchestrator Slice**: Managing the research loop and UI
|
| 42 |
|
|
|
|
| 54 |
- [Getting Started](getting-started/installation.md) - Installation and setup
|
| 55 |
- [Configuration](configuration/index.md) - Configuration guide
|
| 56 |
- [API Reference](api/agents.md) - API documentation
|
| 57 |
+
- [Contributing](contributing.md) - Development guidelines
|
| 58 |
|
| 59 |
## Links
|
| 60 |
|
docs/{LICENSE.md → license.md}
RENAMED
|
File without changes
|
docs/overview/architecture.md
CHANGED
|
@@ -1,6 +1,6 @@
|
|
| 1 |
# Architecture Overview
|
| 2 |
|
| 3 |
-
|
| 4 |
|
| 5 |
## Core Architecture
|
| 6 |
|
|
@@ -134,11 +134,10 @@ The graph orchestrator (`src/orchestrator/graph_orchestrator.py`) implements a f
|
|
| 134 |
- **Research Flows**: Iterative and deep research patterns (`src/orchestrator/research_flow.py`)
|
| 135 |
- **Graph Builder**: Graph construction utilities (`src/agent_factory/graph_builder.py`)
|
| 136 |
- **Agents**: Pydantic AI agents (`src/agents/`, `src/agent_factory/agents.py`)
|
| 137 |
-
- **Search Tools**:
|
| 138 |
- **Judge Handler**: LLM-based evidence assessment (`src/agent_factory/judges.py`)
|
| 139 |
- **Embeddings**: Semantic search & deduplication (`src/services/embeddings.py`)
|
| 140 |
- **Statistical Analyzer**: Modal sandbox execution (`src/services/statistical_analyzer.py`)
|
| 141 |
-
- **Multimodal Processing**: Image OCR and audio STT/TTS services (`src/services/multimodal_processing.py`, `src/services/audio_processing.py`)
|
| 142 |
- **Middleware**: State management, budget tracking, workflow coordination (`src/middleware/`)
|
| 143 |
- **MCP Tools**: Claude Desktop integration (`src/mcp_tools.py`)
|
| 144 |
- **Gradio UI**: Web interface with MCP server and streaming (`src/app.py`)
|
|
@@ -170,25 +169,24 @@ The system supports complex research workflows through:
|
|
| 170 |
|
| 171 |
- **Orchestrator Factory** (`src/orchestrator_factory.py`):
|
| 172 |
- Auto-detects mode: "advanced" if OpenAI key available, else "simple"
|
| 173 |
-
- Supports explicit mode selection: "simple", "magentic"
|
| 174 |
- Lazy imports for optional dependencies
|
| 175 |
|
| 176 |
-
- **
|
| 177 |
-
- `
|
| 178 |
-
- `
|
| 179 |
-
- `
|
| 180 |
-
- `deep`: Parallel section-based research with planning (Free Tier)
|
| 181 |
-
- `auto`: Intelligent mode detection based on query complexity (Free Tier)
|
| 182 |
-
|
| 183 |
-
- **Graph Research Modes** (used within graph orchestrator, separate from orchestrator mode):
|
| 184 |
-
- `iterative`: Single research loop pattern
|
| 185 |
-
- `deep`: Multi-section parallel research pattern
|
| 186 |
-
- `auto`: Auto-detect pattern based on query complexity
|
| 187 |
|
| 188 |
- **Execution Modes**:
|
| 189 |
- `use_graph=True`: Graph-based execution (parallel, conditional routing)
|
| 190 |
- `use_graph=False`: Agent chains (sequential, backward compatible)
|
| 191 |
|
| 192 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 193 |
|
| 194 |
|
|
|
|
| 1 |
# Architecture Overview
|
| 2 |
|
| 3 |
+
DeepCritical is a deep research agent system that uses iterative search-and-judge loops to comprehensively answer research questions. The system supports multiple orchestration patterns, graph-based execution, parallel research workflows, and long-running task management with real-time streaming.
|
| 4 |
|
| 5 |
## Core Architecture
|
| 6 |
|
|
|
|
| 134 |
- **Research Flows**: Iterative and deep research patterns (`src/orchestrator/research_flow.py`)
|
| 135 |
- **Graph Builder**: Graph construction utilities (`src/agent_factory/graph_builder.py`)
|
| 136 |
- **Agents**: Pydantic AI agents (`src/agents/`, `src/agent_factory/agents.py`)
|
| 137 |
+
- **Search Tools**: PubMed, ClinicalTrials.gov, Europe PMC, RAG (`src/tools/`)
|
| 138 |
- **Judge Handler**: LLM-based evidence assessment (`src/agent_factory/judges.py`)
|
| 139 |
- **Embeddings**: Semantic search & deduplication (`src/services/embeddings.py`)
|
| 140 |
- **Statistical Analyzer**: Modal sandbox execution (`src/services/statistical_analyzer.py`)
|
|
|
|
| 141 |
- **Middleware**: State management, budget tracking, workflow coordination (`src/middleware/`)
|
| 142 |
- **MCP Tools**: Claude Desktop integration (`src/mcp_tools.py`)
|
| 143 |
- **Gradio UI**: Web interface with MCP server and streaming (`src/app.py`)
|
|
|
|
| 169 |
|
| 170 |
- **Orchestrator Factory** (`src/orchestrator_factory.py`):
|
| 171 |
- Auto-detects mode: "advanced" if OpenAI key available, else "simple"
|
| 172 |
+
- Supports explicit mode selection: "simple", "magentic", "advanced"
|
| 173 |
- Lazy imports for optional dependencies
|
| 174 |
|
| 175 |
+
- **Research Modes**:
|
| 176 |
+
- `iterative`: Single research loop
|
| 177 |
+
- `deep`: Multi-section parallel research
|
| 178 |
+
- `auto`: Auto-detect based on query complexity
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 179 |
|
| 180 |
- **Execution Modes**:
|
| 181 |
- `use_graph=True`: Graph-based execution (parallel, conditional routing)
|
| 182 |
- `use_graph=False`: Agent chains (sequential, backward compatible)
|
| 183 |
|
| 184 |
+
|
| 185 |
+
|
| 186 |
+
|
| 187 |
+
|
| 188 |
+
|
| 189 |
+
|
| 190 |
+
|
| 191 |
|
| 192 |
|
docs/overview/features.md
CHANGED
|
@@ -1,32 +1,27 @@
|
|
| 1 |
# Features
|
| 2 |
|
| 3 |
-
|
| 4 |
|
| 5 |
## Core Features
|
| 6 |
|
| 7 |
### Multi-Source Search
|
| 8 |
|
| 9 |
-
- **
|
| 10 |
-
- **
|
| 11 |
-
- **PubMed**: Search peer-reviewed biomedical literature via NCBI E-utilities (automatically used when medical knowledge needed)
|
| 12 |
-
- **ClinicalTrials.gov**: Search interventional clinical trials (automatically used when medical knowledge needed)
|
| 13 |
- **Europe PMC**: Search preprints and peer-reviewed articles (includes bioRxiv/medRxiv)
|
| 14 |
- **RAG**: Semantic search within collected evidence using LlamaIndex
|
| 15 |
-
- **Automatic Source Selection**: Automatically determines which sources are needed based on query analysis
|
| 16 |
|
| 17 |
### MCP Integration
|
| 18 |
|
| 19 |
- **Model Context Protocol**: Expose search tools via MCP server
|
| 20 |
-
- **Claude Desktop**: Use
|
| 21 |
- **MCP Clients**: Compatible with any MCP-compatible client
|
| 22 |
|
| 23 |
### Authentication
|
| 24 |
|
| 25 |
-
- **
|
| 26 |
-
- **
|
| 27 |
-
- **
|
| 28 |
-
- **Free Tier Support**: Automatic fallback to HuggingFace Inference API (public models) when no API key is available
|
| 29 |
-
- **Authentication Check**: The application will display an error message if authentication is not provided
|
| 30 |
|
| 31 |
### Secure Code Execution
|
| 32 |
|
|
@@ -45,26 +40,9 @@ The DETERMINATOR provides a comprehensive set of features for AI-assisted resear
|
|
| 45 |
|
| 46 |
- **Graph-Based Execution**: Flexible graph orchestration with conditional routing
|
| 47 |
- **Parallel Research Loops**: Run multiple research tasks concurrently
|
| 48 |
-
- **Iterative Research**: Single-loop research with search-judge-synthesize cycles
|
| 49 |
- **Deep Research**: Multi-section parallel research with planning and synthesis
|
| 50 |
-
- **Magentic Orchestration**: Multi-agent coordination using Microsoft Agent Framework
|
| 51 |
-
- **Stops at Nothing**: Only stops at configured limits (budget, time, iterations), otherwise continues until finding precise answers
|
| 52 |
-
|
| 53 |
-
**Orchestrator Modes**:
|
| 54 |
-
- `simple`: Legacy linear search-judge loop
|
| 55 |
-
- `advanced` (or `magentic`): Multi-agent coordination (requires OpenAI API key)
|
| 56 |
-
- `iterative`: Knowledge-gap-driven research with single loop
|
| 57 |
-
- `deep`: Parallel section-based research with planning
|
| 58 |
-
- `auto`: Intelligent mode detection based on query complexity
|
| 59 |
-
|
| 60 |
-
**Graph Research Modes** (used within graph orchestrator):
|
| 61 |
-
- `iterative`: Single research loop pattern
|
| 62 |
-
- `deep`: Multi-section parallel research pattern
|
| 63 |
-
- `auto`: Auto-detect pattern based on query complexity
|
| 64 |
-
|
| 65 |
-
**Execution Modes**:
|
| 66 |
-
- `use_graph=True`: Graph-based execution with parallel and conditional routing
|
| 67 |
-
- `use_graph=False`: Agent chains with sequential execution (backward compatible)
|
| 68 |
|
| 69 |
### Real-Time Streaming
|
| 70 |
|
|
@@ -86,16 +64,6 @@ The DETERMINATOR provides a comprehensive set of features for AI-assisted resear
|
|
| 86 |
- **Conversation History**: Track iteration history and agent interactions
|
| 87 |
- **State Synchronization**: Share evidence across parallel loops
|
| 88 |
|
| 89 |
-
### Multimodal Input & Output
|
| 90 |
-
|
| 91 |
-
- **Image Input (OCR)**: Upload images and extract text using optical character recognition
|
| 92 |
-
- **Audio Input (STT)**: Record or upload audio files and transcribe to text using speech-to-text
|
| 93 |
-
- **Audio Output (TTS)**: Generate audio responses with text-to-speech synthesis
|
| 94 |
-
- **Configurable Settings**: Enable/disable multimodal features via sidebar settings
|
| 95 |
-
- **Voice Selection**: Choose from multiple TTS voices (American English: af_*, am_*)
|
| 96 |
-
- **Speech Speed Control**: Adjust TTS speech speed (0.5x to 2.0x)
|
| 97 |
-
- **Multimodal Processing Service**: Integrated service for processing images and audio files
|
| 98 |
-
|
| 99 |
## Advanced Features
|
| 100 |
|
| 101 |
### Agent System
|
|
@@ -137,12 +105,10 @@ The DETERMINATOR provides a comprehensive set of features for AI-assisted resear
|
|
| 137 |
|
| 138 |
### Gradio Interface
|
| 139 |
|
| 140 |
-
- **Real-Time Chat**: Interactive chat interface
|
| 141 |
- **Streaming Updates**: Live progress updates
|
| 142 |
- **Accordion UI**: Organized display of pending/done operations
|
| 143 |
- **OAuth Integration**: Seamless HuggingFace authentication
|
| 144 |
-
- **Multimodal Input**: Support for text, images, and audio input in the same interface
|
| 145 |
-
- **Sidebar Settings**: Configuration accordions for research, multimodal, and audio settings
|
| 146 |
|
| 147 |
### MCP Server
|
| 148 |
|
|
@@ -167,3 +133,12 @@ The DETERMINATOR provides a comprehensive set of features for AI-assisted resear
|
|
| 167 |
- **Architecture Diagrams**: Visual architecture documentation
|
| 168 |
- **API Reference**: Complete API documentation
|
| 169 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
# Features
|
| 2 |
|
| 3 |
+
DeepCritical provides a comprehensive set of features for AI-assisted research:
|
| 4 |
|
| 5 |
## Core Features
|
| 6 |
|
| 7 |
### Multi-Source Search
|
| 8 |
|
| 9 |
+
- **PubMed**: Search peer-reviewed biomedical literature via NCBI E-utilities
|
| 10 |
+
- **ClinicalTrials.gov**: Search interventional clinical trials
|
|
|
|
|
|
|
| 11 |
- **Europe PMC**: Search preprints and peer-reviewed articles (includes bioRxiv/medRxiv)
|
| 12 |
- **RAG**: Semantic search within collected evidence using LlamaIndex
|
|
|
|
| 13 |
|
| 14 |
### MCP Integration
|
| 15 |
|
| 16 |
- **Model Context Protocol**: Expose search tools via MCP server
|
| 17 |
+
- **Claude Desktop**: Use DeepCritical tools directly from Claude Desktop
|
| 18 |
- **MCP Clients**: Compatible with any MCP-compatible client
|
| 19 |
|
| 20 |
### Authentication
|
| 21 |
|
| 22 |
+
- **HuggingFace OAuth**: Sign in with HuggingFace account for automatic API token usage
|
| 23 |
+
- **Manual API Keys**: Support for OpenAI, Anthropic, and HuggingFace API keys
|
| 24 |
+
- **Free Tier Support**: Automatic fallback to HuggingFace Inference API
|
|
|
|
|
|
|
| 25 |
|
| 26 |
### Secure Code Execution
|
| 27 |
|
|
|
|
| 40 |
|
| 41 |
- **Graph-Based Execution**: Flexible graph orchestration with conditional routing
|
| 42 |
- **Parallel Research Loops**: Run multiple research tasks concurrently
|
| 43 |
+
- **Iterative Research**: Single-loop research with search-judge-synthesize cycles
|
| 44 |
- **Deep Research**: Multi-section parallel research with planning and synthesis
|
| 45 |
+
- **Magentic Orchestration**: Multi-agent coordination using Microsoft Agent Framework
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 46 |
|
| 47 |
### Real-Time Streaming
|
| 48 |
|
|
|
|
| 64 |
- **Conversation History**: Track iteration history and agent interactions
|
| 65 |
- **State Synchronization**: Share evidence across parallel loops
|
| 66 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 67 |
## Advanced Features
|
| 68 |
|
| 69 |
### Agent System
|
|
|
|
| 105 |
|
| 106 |
### Gradio Interface
|
| 107 |
|
| 108 |
+
- **Real-Time Chat**: Interactive chat interface
|
| 109 |
- **Streaming Updates**: Live progress updates
|
| 110 |
- **Accordion UI**: Organized display of pending/done operations
|
| 111 |
- **OAuth Integration**: Seamless HuggingFace authentication
|
|
|
|
|
|
|
| 112 |
|
| 113 |
### MCP Server
|
| 114 |
|
|
|
|
| 133 |
- **Architecture Diagrams**: Visual architecture documentation
|
| 134 |
- **API Reference**: Complete API documentation
|
| 135 |
|
| 136 |
+
|
| 137 |
+
|
| 138 |
+
|
| 139 |
+
|
| 140 |
+
|
| 141 |
+
|
| 142 |
+
|
| 143 |
+
|
| 144 |
+
|