Spaces:
Running
Running
| import json | |
| import logging | |
| import os | |
| import random | |
| import re | |
| import string | |
| import time | |
| import traceback | |
| import torch | |
| import torch.nn as nn | |
| from funasr import AutoModel | |
| from funasr.metrics.compute_acc import compute_accuracy | |
| from funasr.register import tables | |
| from funasr.train_utils.device_funcs import force_gatherable, to_device | |
| from funasr.utils.datadir_writer import DatadirWriter | |
| from funasr.utils.load_utils import extract_fbank, load_audio_text_image_video | |
| from transformers import AutoConfig, AutoModelForCausalLM | |
| dtype_map = {"bf16": torch.bfloat16, "fp16": torch.float16, "fp32": torch.float32} | |
| class FunASRNano(nn.Module): | |
| def __init__( | |
| self, | |
| audio_encoder: str = None, | |
| audio_encoder_conf: dict = None, | |
| audio_adaptor: str = None, | |
| audio_adaptor_conf: dict = None, | |
| llm: str = None, | |
| llm_conf: dict = None, | |
| input_size: int = 80, | |
| length_normalized_loss: bool = False, | |
| **kwargs, | |
| ): | |
| super().__init__() | |
| # audio encoder | |
| hub = audio_encoder_conf.get("hub", None) | |
| self.audio_encoder_activation_checkpoint = audio_encoder_conf.get( | |
| "activation_checkpoint", False | |
| ) | |
| if hub == "ms": | |
| model = AutoModel(model=audio_encoder, model_revision="master") | |
| audio_encoder_output_size = ( | |
| model.model.encoder_output_size | |
| if hasattr(model.model, "encoder_output_size") | |
| else -1 | |
| ) | |
| audio_encoder = ( | |
| model.model.model.encoder | |
| if hasattr(model.model, "model") | |
| else model.model.encoder | |
| ) | |
| else: | |
| encoder_class = tables.encoder_classes.get(audio_encoder) | |
| audio_encoder = encoder_class(input_size=input_size, **audio_encoder_conf) | |
| audio_encoder_output_size = audio_encoder.output_size() | |
| freeze = audio_encoder_conf.get("freeze", True) | |
| freeze_layer_num = int(audio_encoder_conf.get("freeze_layer_num", -1)) | |
| if freeze: | |
| for name, param in audio_encoder.named_parameters(): | |
| param.requires_grad = False | |
| audio_encoder.eval() | |
| self.audio_encoder = audio_encoder | |
| # llm | |
| self.llm = None | |
| init_param_path = llm_conf.get("init_param_path", None) | |
| llm_dim = None | |
| llm_load_kwargs = llm_conf.get("load_kwargs", {}) | |
| config = AutoConfig.from_pretrained(init_param_path) | |
| model = AutoModelForCausalLM.from_config(config, **llm_load_kwargs) | |
| freeze = llm_conf.get("freeze", True) | |
| if freeze: | |
| for name, param in model.named_parameters(): | |
| param.requires_grad = False | |
| model.eval() | |
| logging.info(f"use_lora: {llm_conf.get('use_lora', False)}") | |
| if llm_conf.get("use_lora", False): | |
| from omegaconf import DictConfig, OmegaConf | |
| lora_conf = llm_conf.get("lora_conf", {}) | |
| if isinstance(lora_conf, (OmegaConf, DictConfig)): | |
| lora_conf = OmegaConf.to_container(lora_conf, resolve=True) | |
| from peft import LoraConfig, PeftModel, get_peft_model | |
| lora_init_param_path = lora_conf.get("init_param_path", None) | |
| if lora_init_param_path is not None: | |
| logging.info(f"lora_init_param_path: {lora_init_param_path}") | |
| model = PeftModel.from_pretrained(model, lora_init_param_path) | |
| for name, param in model.named_parameters(): | |
| if not lora_conf.get("freeze_lora", False): | |
| if "lora_" in name: | |
| param.requires_grad = True | |
| else: | |
| peft_config = LoraConfig(**lora_conf) | |
| model = get_peft_model(model, peft_config) | |
| model.print_trainable_parameters() | |
| if llm_conf.get("activation_checkpoint", False): | |
| model.gradient_checkpointing_enable() | |
| self.llm_dtype = llm_conf.get("llm_dtype", "fp32") | |
| self.llm = model.to(dtype_map[self.llm_dtype]) | |
| llm_dim = model.get_input_embeddings().weight.shape[-1] | |
| # adaptor | |
| adaptor_class = tables.adaptor_classes.get(audio_adaptor) | |
| if audio_encoder_output_size > 0: | |
| audio_adaptor_conf["encoder_dim"] = audio_encoder_output_size | |
| audio_adaptor_conf["llm_dim"] = ( | |
| llm_dim if llm_dim is not None else audio_adaptor_conf["llm_dim"] | |
| ) | |
| audio_adaptor = adaptor_class(**audio_adaptor_conf) | |
| freeze = audio_adaptor_conf.get("freeze", False) | |
| if freeze: | |
| for name, param in audio_adaptor.named_parameters(): | |
| param.requires_grad = False | |
| audio_adaptor.eval() | |
| self.audio_adaptor = audio_adaptor | |
| self.length_normalized_loss = length_normalized_loss | |
| self.feat_permute = audio_encoder_conf.get("feat_permute", True) | |
| rank = int(os.environ.get("RANK", 0)) | |
| logging.info(f"rank: {rank}, model is builded.") | |
| def forward( | |
| self, | |
| speech: torch.Tensor = None, | |
| speech_lengths: torch.Tensor = None, | |
| input_ids: torch.Tensor = None, | |
| attention_mask: torch.Tensor = None, | |
| labels_ids: torch.Tensor = None, | |
| fbank_beg: torch.Tensor = None, | |
| fbank_mask: torch.Tensor = None, | |
| **kwargs, | |
| ): | |
| batch_size, token_num = input_ids.shape | |
| stats = {} | |
| input_ids[input_ids < 0] = 0 | |
| inputs_embeds = self.llm.model.get_input_embeddings()(input_ids) | |
| if speech is not None: | |
| if len(speech_lengths.size()) > 1: | |
| speech_lengths = speech_lengths[:, 0] | |
| batch_size_speech, frames, _ = speech.shape | |
| # audio encoder | |
| if self.audio_encoder_activation_checkpoint: | |
| from torch.utils.checkpoint import checkpoint | |
| encoder_out, encoder_out_lens = checkpoint( | |
| self.encode, speech, speech_lengths, use_reentrant=False | |
| ) | |
| else: | |
| encoder_out, encoder_out_lens = self.encode(speech, speech_lengths) | |
| # audio_adaptor | |
| encoder_out, encoder_out_lens = self.audio_adaptor( | |
| encoder_out, encoder_out_lens | |
| ) | |
| batch_size, token_num, dims = inputs_embeds.shape | |
| fake_token_len = kwargs.get("fake_token_len") | |
| fake_token_len[fake_token_len < 0] = 0 | |
| fbank_beg[fbank_beg < 0] = 0 | |
| speech_idx = 0 | |
| for batch_idx in range(batch_size): | |
| for turn_id in range(fbank_beg.shape[1]): | |
| fbank_beg_idx = fbank_beg[batch_idx, turn_id].item() | |
| if fbank_beg_idx > 0: | |
| speech_token_len = fake_token_len[batch_idx, turn_id] | |
| speech_token = encoder_out[speech_idx, :speech_token_len, :] | |
| try: | |
| inputs_embeds[ | |
| batch_idx, | |
| fbank_beg_idx : fbank_beg_idx + speech_token_len, | |
| :, | |
| ] = speech_token | |
| except Exception as e: | |
| logging.error(f"{str(e)}, {traceback.format_exc()}") | |
| logging.info( | |
| f"batch_idx: {batch_idx}, inputs_embeds: {inputs_embeds.shape}, fbank_beg_idx: {fbank_beg_idx}, speech_token_len: {speech_token_len}, encoder_out: {encoder_out.shape}, encoder_out_lens: {encoder_out_lens}, fake_token_len: {fake_token_len}, speech_lengths: {speech_lengths}" | |
| ) | |
| speech_token_len = encoder_out_lens[speech_idx].item() | |
| speech_token = encoder_out[speech_idx, :speech_token_len, :] | |
| inputs_embeds[ | |
| batch_idx, | |
| fbank_beg_idx : fbank_beg_idx + speech_token_len, | |
| :, | |
| ] = speech_token | |
| speech_idx += 1 | |
| stats["batch_size_speech"] = batch_size_speech | |
| stats["batch_size_x_frames"] = frames * batch_size_speech | |
| stats["batch_size_real_frames"] = speech_lengths.sum().item() | |
| stats["padding_frames"] = ( | |
| stats["batch_size_x_frames"] - stats["batch_size_real_frames"] | |
| ) | |
| with torch.cuda.amp.autocast( | |
| enabled=True if self.llm_dtype != "fp32" else False, | |
| dtype=dtype_map[self.llm_dtype], | |
| ): | |
| labels_ids[labels_ids == -1] = -100 | |
| attention_mask[attention_mask < 0] = 0 | |
| model_outputs = self.llm( | |
| inputs_embeds=inputs_embeds.to(dtype_map[self.llm_dtype]), | |
| attention_mask=attention_mask, | |
| labels=labels_ids, | |
| ) | |
| loss = model_outputs.loss | |
| with torch.no_grad(): | |
| preds = torch.argmax(model_outputs.logits, -1) | |
| acc_att = compute_accuracy( | |
| preds[:, :-1], labels_ids[:, 1:], ignore_label=-100 | |
| ) | |
| stats["acc"] = acc_att | |
| stats["loss"] = torch.clone(loss.detach()) | |
| stats["batch_size"] = batch_size | |
| stats["batch_size_x_tokens"] = token_num * batch_size | |
| stats["batch_size_real_tokens"] = attention_mask.sum().item() | |
| stats["padding_tokens"] = ( | |
| stats["batch_size_x_tokens"] - stats["batch_size_real_tokens"] | |
| ) | |
| dialog_turns = (fbank_beg > 0).sum(-1) | |
| dialog_turns_max = torch.max(dialog_turns).int().item() | |
| dialog_turns_avg = dialog_turns.sum().item() / batch_size | |
| stats["dialog_turns_max"] = dialog_turns_max | |
| stats["dialog_turns_avg"] = dialog_turns_avg | |
| # force_gatherable: to-device and to-tensor if scalar for DataParallel | |
| if self.length_normalized_loss: | |
| batch_size = int((labels_ids > 0 + 1).sum()) | |
| loss, stats, weight = force_gatherable((loss, stats, batch_size), loss.device) | |
| return loss, stats, weight | |
| def forward_export(self, speech, speech_lengths, **kwargs): | |
| x, olens = self.audio_encoder(speech, speech_lengths) | |
| encoder_out, encoder_out_lens = self.audio_adaptor(x, olens) | |
| return encoder_out, encoder_out_lens | |
| def encode(self, speech, speech_lengths): | |
| # audio encoder | |
| if self.feat_permute: | |
| encoder_out, encoder_out_lens = self.audio_encoder( | |
| speech.permute(0, 2, 1), speech_lengths | |
| ) | |
| else: | |
| encoder_out, encoder_out_lens = self.audio_encoder(speech, speech_lengths) | |
| return encoder_out, encoder_out_lens | |
| def data_template(self, data): | |
| system, user, assistant = [], [], [] | |
| for i, item in enumerate(data): | |
| role = item["role"] | |
| content = item["content"] | |
| if role == "system": | |
| system.append(content) | |
| elif role == "user": | |
| if "audio" in item: | |
| audio = item["audio"] | |
| content = [content, audio] | |
| user.append(content) | |
| elif role == "assistant": | |
| assistant.append(content) | |
| system = system * len(user) | |
| contents = { | |
| "system": system, | |
| "user": user, | |
| "assistant": assistant, | |
| } | |
| return contents | |
| def data_load_speech( | |
| self, contents: dict, tokenizer, frontend, meta_data={}, **kwargs | |
| ): | |
| system = contents["system"] | |
| user = contents["user"] | |
| assistant = contents["assistant"] | |
| pattern = re.compile(r"(<\|startofspeech\|>.*?<\|endofspeech\|>)") | |
| do_think = True | |
| sys_prompt = True | |
| if "dataset_conf" in kwargs: | |
| do_think = kwargs["dataset_conf"].get("do_think", True) | |
| sys_prompt = kwargs["dataset_conf"].get("sys_prompt", True) | |
| input_ids, labels, fbank, fbank_lens, fbank_mask, fbank_beg, fake_token_len = ( | |
| [], | |
| [], | |
| [], | |
| [], | |
| [], | |
| [], | |
| [], | |
| ) | |
| input_source_ids = [] | |
| for i, (system_prompt, user_prompt, target_out) in enumerate( | |
| zip(system, user, assistant) | |
| ): | |
| if i >= kwargs.get("multiturn_num_max", 5): | |
| break | |
| if len(input_ids) > kwargs.get("max_token_length", 1500): | |
| break | |
| if isinstance(user_prompt, (list, tuple)): | |
| user_prompt, audio = user_prompt | |
| if i == 0: | |
| if kwargs.get("infer_with_assistant_input", False): | |
| source_input = f"<|im_start|>system\n{system_prompt}<|im_end|>\n<|im_start|>user\n{user_prompt}" | |
| if not sys_prompt: | |
| source_input = f"<|im_start|>user\n{user_prompt}" | |
| else: | |
| source_input = f"<|im_start|>system\n{system_prompt}<|im_end|>\n<|im_start|>user\n{user_prompt}<|im_end|>\n<|im_start|>assistant\n" | |
| if not sys_prompt: | |
| source_input = f"<|im_start|>user\n{user_prompt}<|im_end|>\n<|im_start|>assistant\n" | |
| else: | |
| if kwargs.get("infer_with_assistant_input", False): | |
| source_input = f"<|im_start|>user\n{user_prompt}" | |
| else: | |
| source_input = f"<|im_start|>user\n{user_prompt}<|im_end|>\n<|im_start|>assistant\n" | |
| if not do_think: | |
| source_input += "<think>\n\n</think>\n\n" | |
| splits = pattern.split(source_input) | |
| source_ids = [] | |
| fbank_mask_i = [] | |
| fake_token_len_i = 0 | |
| fbank_beg_i = -1 | |
| speech, speech_lengths = [], [] | |
| for k, sub_str in enumerate(splits): | |
| if not sub_str.startswith("<|startofspeech|>"): | |
| sub_token = tokenizer.encode(sub_str) | |
| source_ids += sub_token | |
| fbank_mask_i += [0] * len(sub_token) | |
| else: | |
| sub_str = sub_str.replace("<|startofspeech|>", "").replace( | |
| "<|endofspeech|>", "" | |
| ) | |
| if sub_str.startswith("!"): | |
| sub_str = sub_str[1:] | |
| if sub_str.startswith("!"): # !!: audio sample point | |
| sub_str = audio | |
| try: | |
| time1 = time.perf_counter() | |
| data_src = load_audio_text_image_video( | |
| sub_str, fs=frontend.fs, **kwargs | |
| ) | |
| time2 = time.perf_counter() | |
| meta_data["load_data"] = f"{time2 - time1:0.3f}" | |
| except Exception as e: | |
| logging.error( | |
| f"Loading wav failed! {str(e)}, {traceback.format_exc()}" | |
| ) | |
| speech, speech_lengths = extract_fbank( | |
| data_src, | |
| data_type=kwargs.get("data_type", "sound"), | |
| frontend=frontend, | |
| is_final=True, | |
| ) # speech: [b, T, d] | |
| time3 = time.perf_counter() | |
| meta_data["extract_feat"] = f"{time3 - time2:0.3f}" | |
| meta_data["batch_data_time"] = ( | |
| speech_lengths.sum().item() | |
| * frontend.frame_shift | |
| * frontend.lfr_n | |
| / 1000 | |
| ) | |
| if self.feat_permute: | |
| speech = speech.permute(0, 2, 1) | |
| olens = 1 + (speech_lengths[0].item() - 3 + 2 * 1) // 2 | |
| olens = 1 + (olens - 3 + 2 * 1) // 2 | |
| fake_token_len_i = (olens - 1) // 2 + 1 | |
| fake_token = [0] * fake_token_len_i | |
| fbank_beg_i = len(source_ids) | |
| source_ids += fake_token | |
| fbank_mask_i += [1] * len(fake_token) | |
| fbank_beg += [fbank_beg_i + len(input_ids)] | |
| fake_token_len += [fake_token_len_i] | |
| source_mask = [-100] * len(source_ids) | |
| target_out = f"{target_out}<|im_end|>" | |
| target_ids = tokenizer.encode(target_out) | |
| input_source_ids = input_ids + source_ids | |
| input_ids += source_ids + target_ids | |
| labels += source_mask + target_ids | |
| fbank_mask += fbank_mask_i | |
| if len(speech) > 0: | |
| fbank.append(speech[0, :, :]) | |
| fbank_lens.append(speech_lengths) | |
| input_ids = torch.tensor( | |
| input_ids, dtype=torch.int64 | |
| ) # [: self.max_token_length] | |
| attention_mask = torch.tensor([1] * len(input_ids), dtype=torch.int32) | |
| labels = torch.tensor(labels, dtype=torch.int64) # [: self.max_token_length] | |
| fbank_mask = torch.tensor(fbank_mask, dtype=torch.float32) | |
| fbank_beg = torch.tensor(fbank_beg, dtype=torch.int32) | |
| fake_token_len = torch.tensor(fake_token_len, dtype=torch.int32) | |
| source_ids = torch.tensor(input_source_ids, dtype=torch.int64) | |
| target_ids = torch.tensor(target_ids, dtype=torch.int64) | |
| if len(fbank) > 0: | |
| speech = torch.nn.utils.rnn.pad_sequence( | |
| fbank, batch_first=True, padding_value=0.0 | |
| ) | |
| speech_lengths = torch.nn.utils.rnn.pad_sequence( | |
| fbank_lens, batch_first=True, padding_value=-1 | |
| ) | |
| else: | |
| speech = [] | |
| speech_lengths = [] | |
| output = { | |
| "speech": speech, | |
| "speech_lengths": speech_lengths, | |
| "fbank_mask": fbank_mask[None, :], | |
| "fbank_beg": fbank_beg[None,], | |
| "fake_token_len": fake_token_len[None, :], | |
| "input_ids": input_ids[None,], | |
| "attention_mask": attention_mask[None,], | |
| "labels_ids": labels, | |
| "source_ids": source_ids[None, :], | |
| "target_ids": target_ids[None, :], | |
| } | |
| return output | |
| def inference_prepare( | |
| self, | |
| data_in, | |
| data_lengths=None, | |
| key: list = None, | |
| tokenizer=None, | |
| frontend=None, | |
| **kwargs, | |
| ): | |
| meta_data = {} | |
| if kwargs.get("batch_size", 1) > 1: | |
| raise NotImplementedError("batch decoding is not implemented") | |
| contents = self.data_template(data_in[0]) | |
| output = self.data_load_speech( | |
| contents, tokenizer, frontend, meta_data=meta_data, **kwargs | |
| ) | |
| batch = to_device(output, kwargs["device"]) | |
| # audio encoder | |
| speech = batch["speech"] | |
| if len(speech) > 0: | |
| if "audio_embedding" in kwargs and "audio_embedding_lens" in kwargs: | |
| encoder_out = kwargs["audio_embedding"] | |
| encoder_out_lens = kwargs["audio_embedding_lens"] | |
| else: | |
| speech_lengths = batch["speech_lengths"][:, 0] | |
| # fp16 | |
| if kwargs.get("fp16", False): | |
| speech = speech.to(torch.float16) | |
| elif kwargs.get("bf16", False): | |
| speech = speech.to(torch.bfloat16) | |
| # audio encoder | |
| encoder_out, encoder_out_lens = self.encode(speech, speech_lengths) | |
| # audio_adaptor | |
| encoder_out, encoder_out_lens = self.audio_adaptor( | |
| encoder_out, encoder_out_lens | |
| ) | |
| meta_data["audio_adaptor_out"] = encoder_out | |
| meta_data["audio_adaptor_out_lens"] = encoder_out_lens | |
| input_ids = batch["input_ids"] | |
| source_ids = batch["source_ids"] | |
| fbank_beg = batch["fbank_beg"] | |
| fake_token_len = batch["fake_token_len"] | |
| if not kwargs.get("tearchforing", False): | |
| input_ids = source_ids | |
| input_ids[input_ids < 0] = 0 | |
| inputs_embeds = self.llm.model.get_input_embeddings()(input_ids) | |
| batch_size, token_num, dims = inputs_embeds.shape | |
| fake_token_len[fake_token_len < 0] = 0 | |
| fbank_beg[fbank_beg < 0] = 0 | |
| speech_idx = 0 | |
| for batch_idx in range(batch_size): | |
| for turn_id in range(fbank_beg.shape[1]): | |
| fbank_beg_idx = fbank_beg[batch_idx, turn_id].item() | |
| if fbank_beg_idx > 0: | |
| speech_token_len = fake_token_len[batch_idx, turn_id] | |
| speech_token = encoder_out[speech_idx, :speech_token_len, :] | |
| try: | |
| inputs_embeds[ | |
| batch_idx, | |
| fbank_beg_idx : fbank_beg_idx + speech_token_len, | |
| :, | |
| ] = speech_token | |
| except Exception as e: | |
| # | |
| logging.error(f"{str(e)}, {traceback.format_exc()}") | |
| logging.info( | |
| f"batch_idx: {batch_idx}, inputs_embeds: {inputs_embeds.shape}, fbank_beg_idx: {fbank_beg_idx}, speech_token_len: {speech_token_len}, encoder_out: {encoder_out.shape}, encoder_out_lens: {encoder_out_lens}, fake_token_len: {fake_token_len}, speech_lengths: {speech_lengths}" | |
| ) | |
| speech_token_len = encoder_out_lens[speech_idx].item() | |
| speech_token = encoder_out[speech_idx, :speech_token_len, :] | |
| inputs_embeds[ | |
| batch_idx, | |
| fbank_beg_idx : fbank_beg_idx + speech_token_len, | |
| :, | |
| ] = speech_token | |
| speech_idx += 1 | |
| return inputs_embeds, contents, batch, source_ids, meta_data | |
| def inference( | |
| self, | |
| data_in, | |
| data_lengths=None, | |
| key: list = None, | |
| tokenizer=None, | |
| frontend=None, | |
| **kwargs, | |
| ): | |
| hotwords = kwargs.get("hotwords", []) | |
| if len(hotwords) > 0: | |
| hotwords = ", ".join(hotwords) | |
| prompt = f"请结合上下文信息,更加准确地完成语音转写任务。如果没有相关信息,我们会留空。\n\n\n**上下文信息:**\n\n\n" | |
| prompt += f"热词列表:[{hotwords}]\n" | |
| else: | |
| prompt = "" | |
| language = kwargs.get("language", "auto") | |
| if language not in ("auto", "zh", "en", "ja"): | |
| language = "auto" | |
| if language == "auto": | |
| prompt += "语音转写" | |
| else: | |
| LANGUAGE_MAP = {"zh": "中文", "en": "英文", "ja": "日文"} | |
| prompt += f"语音转写成{LANGUAGE_MAP[language]}" | |
| itn = kwargs.get("itn", True) | |
| if not itn: | |
| prompt += ",不进行文本规整" | |
| prompt += ":" | |
| new_data_in = [] | |
| for data in data_in: | |
| if isinstance(data, str): | |
| new_data_in.append( | |
| [ | |
| {"role": "system", "content": "You are a helpful assistant."}, | |
| { | |
| "role": "user", | |
| "content": f"{prompt}<|startofspeech|>!{data}<|endofspeech|>", | |
| }, | |
| {"role": "assistant", "content": "null"}, | |
| ] | |
| ) | |
| elif isinstance(data, torch.Tensor): | |
| new_data_in.append( | |
| [ | |
| {"role": "system", "content": "You are a helpful assistant."}, | |
| { | |
| "role": "user", | |
| "content": f"{prompt}<|startofspeech|>!!<|endofspeech|>", | |
| "audio": data, | |
| }, | |
| {"role": "assistant", "content": "null"}, | |
| ] | |
| ) | |
| data_in = new_data_in | |
| if key is None: | |
| key = [] | |
| for _ in data_in: | |
| chars = string.ascii_letters + string.digits | |
| key.append( | |
| "rand_key_" + "".join(random.choice(chars) for _ in range(13)) | |
| ) | |
| return self.inference_llm( | |
| data_in, | |
| data_lengths=data_lengths, | |
| key=key, | |
| tokenizer=tokenizer, | |
| frontend=frontend, | |
| **kwargs, | |
| ) | |
| def inference_llm( | |
| self, | |
| data_in, | |
| data_lengths=None, | |
| key: list = None, | |
| tokenizer=None, | |
| frontend=None, | |
| **kwargs, | |
| ): | |
| inputs_embeds, contents, batch, source_ids, meta_data = self.inference_prepare( | |
| data_in, data_lengths, key, tokenizer, frontend, **kwargs | |
| ) | |
| llm_dtype = kwargs.get("llm_dtype", "fp32") | |
| if llm_dtype == "fp32": | |
| llm_dtype = "fp16" if kwargs.get("fp16", False) else llm_dtype | |
| llm_dtype = "bf16" if kwargs.get("bf16", False) else llm_dtype | |
| with torch.cuda.amp.autocast( | |
| enabled=True if llm_dtype != "fp32" else False, dtype=dtype_map[llm_dtype] | |
| ): | |
| label = contents["assistant"][-1] | |
| self.llm = self.llm.to(dtype_map[llm_dtype]) | |
| inputs_embeds = inputs_embeds.to(dtype_map[llm_dtype]) | |
| llm_kwargs = kwargs.get("llm_kwargs", {}) | |
| if not kwargs.get("teachforing", False): | |
| generated_ids = self.llm.generate( | |
| inputs_embeds=inputs_embeds, | |
| max_new_tokens=kwargs.get("max_length", 512), | |
| **llm_kwargs, | |
| ) | |
| response = tokenizer.batch_decode( | |
| generated_ids, | |
| skip_special_tokens=kwargs.get("skip_special_tokens", True), | |
| )[0] | |
| loss = None | |
| else: | |
| labels_ids = batch["labels_ids"] | |
| labels_ids[labels_ids == -1] = -100 | |
| attention_mask = batch.get("attention_mask", None) | |
| model_outputs = self.llm( | |
| inputs_embeds=inputs_embeds, | |
| attention_mask=attention_mask, | |
| labels=labels_ids, | |
| **llm_kwargs, | |
| ) | |
| preds = torch.argmax(model_outputs.logits, -1)[:, source_ids.shape[1] :] | |
| response = tokenizer.batch_decode( | |
| preds, | |
| add_special_tokens=False, | |
| skip_special_tokens=kwargs.get("skip_special_tokens", True), | |
| )[0] | |
| loss = model_outputs.loss.item() | |
| ibest_writer = None | |
| if kwargs.get("output_dir") is not None: | |
| if not hasattr(self, "writer"): | |
| self.writer = DatadirWriter(kwargs.get("output_dir")) | |
| ibest_writer = self.writer[f"{0 + 1}best_recog"] | |
| results = [] | |
| response_clean = re.sub(r"[^\w\s\u3000\u4e00-\u9fff]+", "", response) | |
| result_i = { | |
| "key": key[0], | |
| "text": re.sub(r'\s+', ' ', response.replace("/sil", " ")), | |
| "text_tn": response_clean, | |
| "label": label, | |
| } | |
| if loss is not None: | |
| result_i["loss"] = loss | |
| results.append(result_i) | |
| if ibest_writer is not None: | |
| ibest_writer["text"][key[0]] = response.replace("\n", " ") | |
| ibest_writer["label"][key[0]] = label.replace("\n", " ") | |
| ibest_writer["text_tn"][key[0]] = response_clean | |
| return results, meta_data | |
| def from_pretrained(model: str = None, **kwargs): | |
| from funasr import AutoModel | |
| model, kwargs = AutoModel.build_model( | |
| model=model, trust_remote_code=True, **kwargs | |
| ) | |
| return model, kwargs |