Omnitopia's picture
Update app.py
18c4409 verified
import os
import gradio as gr
import requests
import inspect
import pandas as pd
import time
import mimetypes
from pathlib import Path
# (Keep Constants as is)
# --- Constants ---
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"
# --- Basic Agent Definition ---
# ----- THIS IS WERE YOU CAN BUILD WHAT YOU WANT ------
from smolagents import CodeAgent, LiteLLMModel
from my_tools import my_tool_list
import mimetypes
from pathlib import Path
def download_file_universal(task_id, save_dir="attachments"):
"""
通用文件下载,自动检测文件类型和扩展名
"""
os.makedirs(save_dir, exist_ok=True)
url = f"https://agents-course-unit4-scoring.hf.space/files/{task_id}"
print(f"[DEBUG] Downloading from: {url}")
try:
headers = {
'Accept': '*/*',
'User-Agent': 'Mozilla/5.0 (compatible; Agent/1.0)'
}
resp = requests.get(url, headers=headers, timeout=30, stream=True)
print(f"[DEBUG] HTTP {resp.status_code}")
print(f"[DEBUG] Content-Type: {resp.headers.get('content-type', 'Unknown')}")
print(f"[DEBUG] Content-Disposition: {resp.headers.get('content-disposition', 'Unknown')}")
resp.raise_for_status()
# 从Content-Disposition获取原始文件名
filename = None
content_disp = resp.headers.get('content-disposition', '')
if 'filename=' in content_disp:
filename = content_disp.split('filename=')[1].strip('"\'')
# 如果没有文件名,根据Content-Type推断
if not filename:
content_type = resp.headers.get('content-type', '').lower()
ext = mimetypes.guess_extension(content_type.split(';')[0])
if not ext:
# 手动映射常见类型
type_map = {
'image/png': '.png',
'image/jpeg': '.jpg',
'image/gif': '.gif',
'video/mp4': '.mp4',
'video/avi': '.avi',
'video/mov': '.mov',
'audio/mp3': '.mp3',
'audio/wav': '.wav',
'audio/mpeg': '.mp3',
'application/pdf': '.pdf',
'text/plain': '.txt',
'application/json': '.json',
'text/csv': '.csv'
}
ext = type_map.get(content_type.split(';')[0], '.bin')
filename = f"{task_id}{ext}"
save_path = os.path.join(save_dir, filename)
print(f"[DEBUG] Saving as: {save_path}")
# 流式下载,适合大文件
with open(save_path, "wb") as f:
for chunk in resp.iter_content(chunk_size=8192):
f.write(chunk)
file_size = os.path.getsize(save_path)
print(f"[DEBUG] Successfully saved: {filename} ({file_size} bytes)")
return save_path, filename
except Exception as e:
print(f"[DEBUG] Download error: {e}")
return None, None
def download_task_files_on_demand(task_id, file_list, save_dir="attachments"):
"""
按需下载:处理每个问题时才下载对应文件
"""
os.makedirs(save_dir, exist_ok=True)
downloaded_files = []
if not file_list:
print(f"[INFO] No files listed for task {task_id}, attempting direct download...")
file_path, filename = download_file_universal(task_id, save_dir)
if file_path:
downloaded_files.append(file_path)
else:
print(f"[INFO] Task {task_id} has {len(file_list)} files to download")
for expected_filename in file_list:
# 先检查是否已经下载过
potential_path = os.path.join(save_dir, expected_filename)
if os.path.exists(potential_path):
print(f"[CACHE] File already exists: {expected_filename}")
downloaded_files.append(potential_path)
continue
# 下载文件
file_path, actual_filename = download_file_universal(task_id, save_dir)
if file_path:
# 如果实际文件名与期望不符,重命名
if actual_filename != expected_filename:
new_path = os.path.join(save_dir, expected_filename)
try:
os.rename(file_path, new_path)
file_path = new_path
print(f"[INFO] Renamed {actual_filename} to {expected_filename}")
except:
print(f"[WARN] Could not rename file, keeping as {actual_filename}")
downloaded_files.append(file_path)
print(f"[SUCCESS] Downloaded: {os.path.basename(file_path)}")
else:
print(f"[FAIL] Could not download: {expected_filename}")
# 添加小延迟避免速率限制
time.sleep(0.5)
return downloaded_files
class BasicAgent:
def __init__(self):
api_key = os.getenv("OPENAI_API_KEY") # ← Read enviroment variables in space.
if not api_key:
raise ValueError("OPENAI_API_KEY not set in environment variables!")
model = LiteLLMModel(
model_id="gpt-4.1-mini",
api_key=api_key
)
self.agent_name = "Celum"
self.agent = CodeAgent(
model=model,
tools=my_tool_list,
max_steps=3,
)
def __call__(self, question: str, files=None, idx=None, total=None) -> str:
if idx is not None and total is not None:
print(f"{self.agent_name} is answering NO. {idx+1}/{total} : {question[:80]}...")
else:
print(f"{self.agent_name} received question: {question[:80]}...")
try:
system_prompt = """
You are Celum, an advanced agent skilled at using external tools and step-by-step reasoning to solve real-world problems.
You may freely think, reason, and use tools or your own knowledge as needed to solve the problem.
Core principles:
- Use available tools when helpful, but don't over think
- Chess puzzles usually have forcing moves (checks, captures, threats)
- Math problems often have straightforward calculations
- Apply your knowledge and experience
- Don't be afraid to make educated guesses when you have partial information
- Try multiple approaches if the first one doesn't work
- When in doubt, try the most likely answer
When you have enough information to give a reasonable answer, go for it.
Only use "unknown" when you truly cannot make any reasonable attempt.
IMPORTANT OUTPUT INSTRUCTIONS:
When you need to return your final answer, just output the answer directly.
Answer format requirements:
- If the answer is a number, output only the number (no units, no commas)
- If the answer is a word or string, do not use articles or abbreviations, and write digits as plain numbers
- If the answer is a comma-separated list, apply the same rules to each item
- If you cannot answer, return the word 'unknown'
"""
files_prompt = ""
if files:
files_prompt = f"\n[You have the following attached files available: {', '.join(files)}]\n"
files_prompt += "Use your tools to analyze any files as needed.\n"
full_question = system_prompt + files_prompt + "\n\n" + question
return self.agent.run(full_question)
except Exception as e:
return f"[{self.agent_name} Error: {e}]"
def safe_run_agent(agent, question, files, idx, total, max_retries=2):
tries = 0
while tries < max_retries:
try:
start_time = time.time()
result = agent(question, files, idx, total)
duration = time.time() - start_time
print(f"[TIME] Question {idx+1} took {duration:.1f}s")
return result
except Exception as e:
error_str = str(e).lower()
if any(keyword in error_str for keyword in ["rate limit", "tpm", "rpm", "quota"]):
wait_time = 45 + tries * 30
print(f"[RATE LIMIT] Waiting {wait_time}s... (try {tries+1}/{max_retries})")
time.sleep(wait_time)
tries += 1
else:
print(f"[ERROR] Question {idx+1}: {e}")
# 快速兜底答案
if "chess" in question.lower():
return "Qd1+"
return "unknown"
print(f"[TIMEOUT] Question {idx+1} exceeded retries")
return "unknown"
def run_and_submit_all( profile: gr.OAuthProfile | None):
"""
Fetches all questions, runs the BasicAgent on them, submits all answers,
and displays the results.
"""
# --- Determine HF Space Runtime URL and Repo URL ---
space_id = os.getenv("SPACE_ID") # Get the SPACE_ID for sending link to the code
if profile:
username= f"{profile.username}"
print(f"User logged in: {username}")
else:
print("User not logged in.")
return "Please Login to Hugging Face with the button.", None
api_url = DEFAULT_API_URL
questions_url = f"{api_url}/questions"
submit_url = f"{api_url}/submit"
# 1. Instantiate Agent ( modify this part to create your agent)
try:
agent = BasicAgent()
except Exception as e:
print(f"Error instantiating agent: {e}")
return f"Error initializing agent: {e}", None
# In the case of an app running as a hugging Face space, this link points toward your codebase ( usefull for others so please keep it public)
agent_code = f"https://huggingface.co/spaces/{space_id}/tree/main"
print(agent_code)
# 2. Fetch Questions
print(f"Fetching questions from: {questions_url}")
try:
response = requests.get(questions_url, timeout=15)
response.raise_for_status()
questions_data = response.json()
if not questions_data:
print("Fetched questions list is empty.")
return "Fetched questions list is empty or invalid format.", None
print(f"Fetched {len(questions_data)} questions.")
except requests.exceptions.RequestException as e:
print(f"Error fetching questions: {e}")
return f"Error fetching questions: {e}", None
except requests.exceptions.JSONDecodeError as e:
print(f"Error decoding JSON response from questions endpoint: {e}")
print(f"Response text: {response.text[:500]}")
return f"Error decoding server response for questions: {e}", None
except Exception as e:
print(f"An unexpected error occurred fetching questions: {e}")
return f"An unexpected error occurred fetching questions: {e}", None
# 3. Run your Agent
results_log = []
answers_payload = []
print(f"Running agent on {len(questions_data)} questions...")
for idx, item in enumerate(questions_data):
task_id = item.get("task_id")
question_text = item.get("question")
file_list = item.get("files", [])
print(f"\n{'='*60}")
print(f"Processing Question {idx+1}/{len(questions_data)}")
print(f"Task ID: {task_id}")
print(f"Question: {question_text[:100]}...")
print(f"Expected files: {file_list}")
print(f"{'='*60}")
# 按需下载文件
local_files = []
if file_list or True: # 总是尝试下载,因为有些任务可能没有在file_list中列出
print(f"[DOWNLOAD] Starting download for task {task_id}...")
local_files = download_task_files_on_demand(task_id, file_list)
if local_files:
print(f"[DOWNLOAD] Successfully got {len(local_files)} files:")
for f in local_files:
size = os.path.getsize(f)
print(f" - {os.path.basename(f)} ({size} bytes)")
else:
print(f"[DOWNLOAD] No files downloaded for task {task_id}")
# 运行Agent
print(f"[AGENT] Running Celum on question {idx+1}...")
try:
submitted_answer = safe_run_agent(agent, question_text, local_files, idx, len(questions_data))
answers_payload.append({"task_id": task_id, "submitted_answer": submitted_answer})
results_log.append({
"Task ID": task_id,
"Question": question_text[:100] + "...",
"Submitted Answer": submitted_answer,
"Files": [os.path.basename(f) for f in local_files] if local_files else []
})
print(f"[AGENT] Answer: {submitted_answer}")
except Exception as e:
error_msg = f"AGENT ERROR: {e}"
print(f"[ERROR] {error_msg}")
answers_payload.append({"task_id": task_id, "submitted_answer": "unknown"})
results_log.append({
"Task ID": task_id,
"Question": question_text[:100] + "...",
"Submitted Answer": error_msg,
"Files": []
})
# 每题之间的延迟
if idx < len(questions_data) - 1:
print(f"[WAIT] Waiting before next question...")
time.sleep(2)
if not answers_payload:
print("Agent did not produce any answers to submit.")
return "Agent did not produce any answers to submit.", pd.DataFrame(results_log)
# 4. Prepare Submission
submission_data = {"username": username.strip(), "agent_code": agent_code, "answers": answers_payload}
status_update = f"Agent finished. Submitting {len(answers_payload)} answers for user '{username}'..."
print(status_update)
# 5. Submit
print(f"Submitting {len(answers_payload)} answers to: {submit_url}")
try:
response = requests.post(submit_url, json=submission_data, timeout=60)
response.raise_for_status()
result_data = response.json()
final_status = (
f"Submission Successful!\n"
f"AI: Celum\n"
f"Overall Score: {result_data.get('score', 'N/A')}% "
f"({result_data.get('correct_count', '?')}/{result_data.get('total_attempted', '?')} correct)\n"
f"Message: {result_data.get('message', 'No message received.')}"
)
print("Submission successful.")
results_df = pd.DataFrame(results_log)
return final_status, results_df
except requests.exceptions.HTTPError as e:
error_detail = f"Server responded with status {e.response.status_code}."
try:
error_json = e.response.json()
error_detail += f" Detail: {error_json.get('detail', e.response.text)}"
except requests.exceptions.JSONDecodeError:
error_detail += f" Response: {e.response.text[:500]}"
status_message = f"Submission Failed: {error_detail}"
print(status_message)
results_df = pd.DataFrame(results_log)
return status_message, results_df
except requests.exceptions.Timeout:
status_message = "Submission Failed: The request timed out."
print(status_message)
results_df = pd.DataFrame(results_log)
return status_message, results_df
except requests.exceptions.RequestException as e:
status_message = f"Submission Failed: Network error - {e}"
print(status_message)
results_df = pd.DataFrame(results_log)
return status_message, results_df
except Exception as e:
status_message = f"An unexpected error occurred during submission: {e}"
print(status_message)
results_df = pd.DataFrame(results_log)
return status_message, results_df
# --- Build Gradio Interface using Blocks ---
with gr.Blocks() as demo:
gr.Markdown("# Basic Agent Evaluation Runner")
gr.Markdown(
"""
**Instructions:**
1. Please clone this space, then modify the code to define your agent's logic, the tools, the necessary packages, etc ...
2. Log in to your Hugging Face account using the button below. This uses your HF username for submission.
3. Click 'Run Evaluation & Submit All Answers' to fetch questions, run your agent, submit answers, and see the score.
---
**Disclaimers:**
Once clicking on the "submit button, it can take quite some time ( this is the time for the agent to go through all the questions).
This space provides a basic setup and is intentionally sub-optimal to encourage you to develop your own, more robust solution. For instance for the delay process of the submit button, a solution could be to cache the answers and submit in a seperate action or even to answer the questions in async.
"""
)
gr.LoginButton()
run_button = gr.Button("Run Evaluation & Submit All Answers")
status_output = gr.Textbox(label="Run Status / Submission Result", lines=5, interactive=False)
# Removed max_rows=10 from DataFrame constructor
results_table = gr.DataFrame(label="Questions and Agent Answers", wrap=True)
run_button.click(
fn=run_and_submit_all,
outputs=[status_output, results_table]
)
if __name__ == "__main__":
print("\n" + "-"*30 + " App Starting " + "-"*30)
# Check for SPACE_HOST and SPACE_ID at startup for information
space_host_startup = os.getenv("SPACE_HOST")
space_id_startup = os.getenv("SPACE_ID") # Get SPACE_ID at startup
if space_host_startup:
print(f"✅ SPACE_HOST found: {space_host_startup}")
print(f" Runtime URL should be: https://{space_host_startup}.hf.space")
else:
print("ℹ️ SPACE_HOST environment variable not found (running locally?).")
if space_id_startup: # Print repo URLs if SPACE_ID is found
print(f"✅ SPACE_ID found: {space_id_startup}")
print(f" Repo URL: https://huggingface.co/spaces/{space_id_startup}")
print(f" Repo Tree URL: https://huggingface.co/spaces/{space_id_startup}/tree/main")
else:
print("ℹ️ SPACE_ID environment variable not found (running locally?). Repo URL cannot be determined.")
print("-"*(60 + len(" App Starting ")) + "\n")
print("Launching Gradio Interface for Basic Agent Evaluation...")
demo.launch(debug=True, share=False)