|
|
import json |
|
|
import os |
|
|
|
|
|
import pandas as pd |
|
|
import numpy as np |
|
|
from src.display.formatting import has_no_nan_values, make_clickable_model |
|
|
from src.display.utils import AutoEvalColumn, EvalQueueColumn |
|
|
from src.leaderboard.read_evals import get_raw_eval_results |
|
|
|
|
|
|
|
|
CLOSED_MODELS = { |
|
|
"openai/GPT-4o": {"params": 72000, "license": "proprietary", "likes": 0, "model_type": "🔒 : closed"}, |
|
|
"Claude-3.5-Sonnet": {"params": 72000, "license": "proprietary", "likes": 0, "model_type": "🔒 : closed"}, |
|
|
} |
|
|
|
|
|
|
|
|
def get_leaderboard_df(results_path: str, requests_path: str, cols: list, benchmark_cols: list) -> pd.DataFrame: |
|
|
"""Creates a dataframe from all the individual experiment results""" |
|
|
raw_data = get_raw_eval_results(results_path, requests_path) |
|
|
all_data_json = [v.to_dict() for v in raw_data] |
|
|
print(all_data_json) |
|
|
|
|
|
df = pd.DataFrame.from_records(all_data_json) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def extract_first(value): |
|
|
if isinstance(value, (list, np.ndarray)): |
|
|
return value[0] if len(value) > 0 else 0 |
|
|
elif isinstance(value, (int, float)): |
|
|
return value |
|
|
else: |
|
|
return 0 |
|
|
|
|
|
df["(T1) Precision (%)"] = df["(T1) Precision (%)"].apply(extract_first) |
|
|
|
|
|
df["(T1) Precision (%)"] = df["(T1) Precision (%)"].apply(extract_first) |
|
|
df["(T1) Title Search Rate (%)"] = df["(T1) Title Search Rate (%)"].apply(extract_first) |
|
|
df["(T1) Overlap (%)"] = df["(T1) Overlap (%)"].apply(extract_first) |
|
|
df["(T1) Precision (First Author) (%)"] = df["(T1) Precision (First Author) (%)"].apply(extract_first) |
|
|
df["(T1) Overlap (First Author) (%)"] = df["(T1) Overlap (First Author) (%)"].apply(extract_first) |
|
|
|
|
|
df["(T2) Similarity (%)"] = df["(T2) Similarity (%)"].apply(extract_first) |
|
|
df["(T2) Entail (TRUE %)"] = df["(T2) Entail (TRUE %)"].apply(extract_first) |
|
|
df["(T2) Entail (GPT-4o %)"] = df["(T2) Entail (GPT-4o %)"].apply(extract_first) |
|
|
df["(T2) ROUGE-1 (%)"] = df["(T2) ROUGE-1 (%)"].apply(extract_first) |
|
|
df["(T2) ROUGE-2 (%)"] = df["(T2) ROUGE-2 (%)"].apply(extract_first) |
|
|
df["(T2) ROUGE-L (%)"] = df["(T2) ROUGE-L (%)"].apply(extract_first) |
|
|
|
|
|
df["(T3) Precision (%)"] = df["(T3) Precision (%)"].apply(extract_first) |
|
|
df["(T3) Title Search Rate (%)"] = df["(T3) Title Search Rate (%)"].apply(extract_first) |
|
|
df["(T3) Overlap (%)"] = df["(T3) Overlap (%)"].apply(extract_first) |
|
|
df["(T3) KPR (%)"] = df["(T3) KPR (%)"].apply(extract_first) |
|
|
df["(T3) ROUGE-1 (%)"] = df["(T3) ROUGE-1 (%)"].apply(extract_first) |
|
|
df["(T3) ROUGE-2 (%)"] = df["(T3) ROUGE-2 (%)"].apply(extract_first) |
|
|
df["(T3) ROUGE-L (%)"] = df["(T3) ROUGE-L (%)"].apply(extract_first) |
|
|
|
|
|
|
|
|
df["Average ⬆️"] = df[["(T1) Precision (%)", |
|
|
"(T1) Title Search Rate (%)", |
|
|
"(T1) Overlap (%)", |
|
|
"(T1) Precision (First Author) (%)", |
|
|
"(T1) Overlap (First Author) (%)", |
|
|
"(T2) Similarity (%)", |
|
|
"(T2) Entail (TRUE %)", |
|
|
"(T2) Entail (GPT-4o %)", |
|
|
"(T2) ROUGE-1 (%)", |
|
|
"(T2) ROUGE-2 (%)", |
|
|
"(T2) ROUGE-L (%)", |
|
|
"(T3) Precision (%)", |
|
|
"(T3) Title Search Rate (%)", |
|
|
"(T3) Overlap (%)", |
|
|
"(T3) KPR (%)", |
|
|
"(T3) ROUGE-1 (%)", |
|
|
"(T3) ROUGE-2 (%)", |
|
|
"(T3) ROUGE-L (%)"]].mean(axis=1) |
|
|
|
|
|
|
|
|
df = df.sort_values(by=["Average ⬆️"], ascending=False) |
|
|
|
|
|
|
|
|
cols = [c for c in cols if c in df.columns] |
|
|
df = df[cols].round(2) |
|
|
|
|
|
|
|
|
benchmark_cols = [c for c in benchmark_cols if c in df.columns] |
|
|
df[benchmark_cols] = df[benchmark_cols].fillna(0) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
return df |
|
|
|
|
|
|
|
|
|
|
|
def get_evaluation_queue_df(save_path: str, cols: list) -> list[pd.DataFrame]: |
|
|
"""Creates the different dataframes for the evaluation queues requestes""" |
|
|
entries = [entry for entry in os.listdir(save_path) if not entry.startswith(".")] |
|
|
all_evals = [] |
|
|
|
|
|
for entry in entries: |
|
|
if ".json" in entry: |
|
|
file_path = os.path.join(save_path, entry) |
|
|
with open(file_path) as fp: |
|
|
data = json.load(fp) |
|
|
|
|
|
data[EvalQueueColumn.model.name] = make_clickable_model(data["model"]) |
|
|
data[EvalQueueColumn.revision.name] = data.get("revision", "main") |
|
|
|
|
|
all_evals.append(data) |
|
|
elif ".md" not in entry: |
|
|
|
|
|
sub_entries = [e for e in os.listdir(f"{save_path}/{entry}") if os.path.isfile(e) and not e.startswith(".")] |
|
|
for sub_entry in sub_entries: |
|
|
file_path = os.path.join(save_path, entry, sub_entry) |
|
|
with open(file_path) as fp: |
|
|
data = json.load(fp) |
|
|
|
|
|
data[EvalQueueColumn.model.name] = make_clickable_model(data["model"]) |
|
|
data[EvalQueueColumn.revision.name] = data.get("revision", "main") |
|
|
all_evals.append(data) |
|
|
|
|
|
pending_list = [e for e in all_evals if e["status"] in ["PENDING", "RERUN"]] |
|
|
running_list = [e for e in all_evals if e["status"] == "RUNNING"] |
|
|
finished_list = [e for e in all_evals if e["status"].startswith("FINISHED") or e["status"] == "PENDING_NEW_EVAL"] |
|
|
df_pending = pd.DataFrame.from_records(pending_list, columns=cols) |
|
|
df_running = pd.DataFrame.from_records(running_list, columns=cols) |
|
|
df_finished = pd.DataFrame.from_records(finished_list, columns=cols) |
|
|
return df_finished[cols], df_running[cols], df_pending[cols] |
|
|
|