tangtang
Update space1
0b5fcb3
import json
import os
import pandas as pd
import numpy as np
from src.display.formatting import has_no_nan_values, make_clickable_model
from src.display.utils import AutoEvalColumn, EvalQueueColumn
from src.leaderboard.read_evals import get_raw_eval_results
CLOSED_MODELS = {
"openai/GPT-4o": {"params": 72000, "license": "proprietary", "likes": 0, "model_type": "🔒 : closed"},
"Claude-3.5-Sonnet": {"params": 72000, "license": "proprietary", "likes": 0, "model_type": "🔒 : closed"},
}
def get_leaderboard_df(results_path: str, requests_path: str, cols: list, benchmark_cols: list) -> pd.DataFrame:
"""Creates a dataframe from all the individual experiment results"""
raw_data = get_raw_eval_results(results_path, requests_path)
all_data_json = [v.to_dict() for v in raw_data]
print(all_data_json)
df = pd.DataFrame.from_records(all_data_json)
# print(df.head(10))
# for model_name, info in CLOSED_MODELS.items():
# if model_name not in df['Model'].values:
# df = pd.concat([df, pd.DataFrame([{
# "Model": model_name,
# "params": info["params"],
# "license": info["license"],
# "likes": info["likes"],
# "model_type": info["model_type"],
# "Precision (%)": 0,
# "Title search rate (%)": 0
# }])], ignore_index=True)
def extract_first(value):
if isinstance(value, (list, np.ndarray)):
return value[0] if len(value) > 0 else 0
elif isinstance(value, (int, float)):
return value
else:
return 0
df["(T1) Precision (%)"] = df["(T1) Precision (%)"].apply(extract_first)
# 将数组转标量,空数组变为 0
df["(T1) Precision (%)"] = df["(T1) Precision (%)"].apply(extract_first)
df["(T1) Title Search Rate (%)"] = df["(T1) Title Search Rate (%)"].apply(extract_first)
df["(T1) Overlap (%)"] = df["(T1) Overlap (%)"].apply(extract_first)
df["(T1) Precision (First Author) (%)"] = df["(T1) Precision (First Author) (%)"].apply(extract_first)
df["(T1) Overlap (First Author) (%)"] = df["(T1) Overlap (First Author) (%)"].apply(extract_first)
# Task 2
df["(T2) Similarity (%)"] = df["(T2) Similarity (%)"].apply(extract_first)
df["(T2) Entail (TRUE %)"] = df["(T2) Entail (TRUE %)"].apply(extract_first)
df["(T2) Entail (GPT-4o %)"] = df["(T2) Entail (GPT-4o %)"].apply(extract_first)
df["(T2) ROUGE-1 (%)"] = df["(T2) ROUGE-1 (%)"].apply(extract_first)
df["(T2) ROUGE-2 (%)"] = df["(T2) ROUGE-2 (%)"].apply(extract_first)
df["(T2) ROUGE-L (%)"] = df["(T2) ROUGE-L (%)"].apply(extract_first)
# Task 3
df["(T3) Precision (%)"] = df["(T3) Precision (%)"].apply(extract_first)
df["(T3) Title Search Rate (%)"] = df["(T3) Title Search Rate (%)"].apply(extract_first)
df["(T3) Overlap (%)"] = df["(T3) Overlap (%)"].apply(extract_first)
df["(T3) KPR (%)"] = df["(T3) KPR (%)"].apply(extract_first)
df["(T3) ROUGE-1 (%)"] = df["(T3) ROUGE-1 (%)"].apply(extract_first)
df["(T3) ROUGE-2 (%)"] = df["(T3) ROUGE-2 (%)"].apply(extract_first)
df["(T3) ROUGE-L (%)"] = df["(T3) ROUGE-L (%)"].apply(extract_first)
# 平均值列
df["Average ⬆️"] = df[["(T1) Precision (%)",
"(T1) Title Search Rate (%)",
"(T1) Overlap (%)",
"(T1) Precision (First Author) (%)",
"(T1) Overlap (First Author) (%)",
"(T2) Similarity (%)",
"(T2) Entail (TRUE %)",
"(T2) Entail (GPT-4o %)",
"(T2) ROUGE-1 (%)",
"(T2) ROUGE-2 (%)",
"(T2) ROUGE-L (%)",
"(T3) Precision (%)",
"(T3) Title Search Rate (%)",
"(T3) Overlap (%)",
"(T3) KPR (%)",
"(T3) ROUGE-1 (%)",
"(T3) ROUGE-2 (%)",
"(T3) ROUGE-L (%)"]].mean(axis=1)
# 排序
df = df.sort_values(by=["Average ⬆️"], ascending=False)
# 保留需要显示的列
cols = [c for c in cols if c in df.columns]
df = df[cols].round(2)
# 如果 benchmark_cols 有列不在 df 中,忽略
benchmark_cols = [c for c in benchmark_cols if c in df.columns]
df[benchmark_cols] = df[benchmark_cols].fillna(0)
# if benchmark_cols:
# df = df[has_no_nan_values(df, benchmark_cols)]
# print(df.head(10))
return df
def get_evaluation_queue_df(save_path: str, cols: list) -> list[pd.DataFrame]:
"""Creates the different dataframes for the evaluation queues requestes"""
entries = [entry for entry in os.listdir(save_path) if not entry.startswith(".")]
all_evals = []
for entry in entries:
if ".json" in entry:
file_path = os.path.join(save_path, entry)
with open(file_path) as fp:
data = json.load(fp)
data[EvalQueueColumn.model.name] = make_clickable_model(data["model"])
data[EvalQueueColumn.revision.name] = data.get("revision", "main")
all_evals.append(data)
elif ".md" not in entry:
# this is a folder
sub_entries = [e for e in os.listdir(f"{save_path}/{entry}") if os.path.isfile(e) and not e.startswith(".")]
for sub_entry in sub_entries:
file_path = os.path.join(save_path, entry, sub_entry)
with open(file_path) as fp:
data = json.load(fp)
data[EvalQueueColumn.model.name] = make_clickable_model(data["model"])
data[EvalQueueColumn.revision.name] = data.get("revision", "main")
all_evals.append(data)
pending_list = [e for e in all_evals if e["status"] in ["PENDING", "RERUN"]]
running_list = [e for e in all_evals if e["status"] == "RUNNING"]
finished_list = [e for e in all_evals if e["status"].startswith("FINISHED") or e["status"] == "PENDING_NEW_EVAL"]
df_pending = pd.DataFrame.from_records(pending_list, columns=cols)
df_running = pd.DataFrame.from_records(running_list, columns=cols)
df_finished = pd.DataFrame.from_records(finished_list, columns=cols)
return df_finished[cols], df_running[cols], df_pending[cols]