Update app.py
#175
by
shaghayeghhp
- opened
app.py
CHANGED
|
@@ -1,169 +1,128 @@
|
|
| 1 |
import os
|
| 2 |
import gradio as gr
|
| 3 |
import requests
|
| 4 |
-
import inspect
|
| 5 |
import pandas as pd
|
|
|
|
|
|
|
| 6 |
|
| 7 |
-
# (Keep Constants as is)
|
| 8 |
# --- Constants ---
|
| 9 |
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"
|
| 10 |
|
| 11 |
-
# ---
|
| 12 |
-
|
|
|
|
| 13 |
class BasicAgent:
|
| 14 |
def __init__(self):
|
| 15 |
-
print("
|
|
|
|
|
|
|
|
|
|
| 16 |
def __call__(self, question: str) -> str:
|
| 17 |
-
|
| 18 |
-
|
| 19 |
-
|
| 20 |
-
|
| 21 |
-
|
| 22 |
-
|
| 23 |
-
|
| 24 |
-
|
| 25 |
-
|
| 26 |
-
|
| 27 |
-
|
| 28 |
-
|
| 29 |
-
|
| 30 |
-
if profile:
|
| 31 |
-
username= f"{profile.username}"
|
| 32 |
-
print(f"User logged in: {username}")
|
| 33 |
-
else:
|
| 34 |
print("User not logged in.")
|
| 35 |
-
return "Please
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 36 |
|
| 37 |
api_url = DEFAULT_API_URL
|
| 38 |
questions_url = f"{api_url}/questions"
|
| 39 |
submit_url = f"{api_url}/submit"
|
| 40 |
|
| 41 |
-
# 1. Instantiate Agent ( modify this part to create your agent)
|
| 42 |
try:
|
| 43 |
agent = BasicAgent()
|
| 44 |
except Exception as e:
|
| 45 |
-
print(f"Error instantiating agent: {e}")
|
| 46 |
return f"Error initializing agent: {e}", None
|
| 47 |
-
# In the case of an app running as a hugging Face space, this link points toward your codebase ( usefull for others so please keep it public)
|
| 48 |
-
agent_code = f"https://huggingface.co/spaces/{space_id}/tree/main"
|
| 49 |
-
print(agent_code)
|
| 50 |
|
| 51 |
-
# 2. Fetch Questions
|
| 52 |
print(f"Fetching questions from: {questions_url}")
|
| 53 |
try:
|
| 54 |
response = requests.get(questions_url, timeout=15)
|
| 55 |
response.raise_for_status()
|
| 56 |
questions_data = response.json()
|
| 57 |
if not questions_data:
|
| 58 |
-
|
| 59 |
-
return "Fetched questions list is empty or invalid format.", None
|
| 60 |
-
print(f"Fetched {len(questions_data)} questions.")
|
| 61 |
-
except requests.exceptions.RequestException as e:
|
| 62 |
-
print(f"Error fetching questions: {e}")
|
| 63 |
-
return f"Error fetching questions: {e}", None
|
| 64 |
-
except requests.exceptions.JSONDecodeError as e:
|
| 65 |
-
print(f"Error decoding JSON response from questions endpoint: {e}")
|
| 66 |
-
print(f"Response text: {response.text[:500]}")
|
| 67 |
-
return f"Error decoding server response for questions: {e}", None
|
| 68 |
except Exception as e:
|
| 69 |
-
|
| 70 |
-
return f"An unexpected error occurred fetching questions: {e}", None
|
| 71 |
|
| 72 |
-
# 3. Run your Agent
|
| 73 |
results_log = []
|
| 74 |
answers_payload = []
|
|
|
|
| 75 |
print(f"Running agent on {len(questions_data)} questions...")
|
| 76 |
for item in questions_data:
|
| 77 |
task_id = item.get("task_id")
|
| 78 |
question_text = item.get("question")
|
| 79 |
-
if not task_id or question_text
|
| 80 |
-
print(f"Skipping item with missing task_id or question: {item}")
|
| 81 |
continue
|
| 82 |
try:
|
| 83 |
-
|
| 84 |
-
answers_payload.append({"task_id": task_id, "submitted_answer":
|
| 85 |
-
results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer":
|
| 86 |
except Exception as e:
|
| 87 |
-
|
| 88 |
-
|
| 89 |
|
| 90 |
if not answers_payload:
|
| 91 |
-
|
| 92 |
-
return "Agent did not produce any answers to submit.", pd.DataFrame(results_log)
|
| 93 |
|
| 94 |
-
|
| 95 |
-
|
| 96 |
-
|
| 97 |
-
|
|
|
|
| 98 |
|
| 99 |
-
|
| 100 |
-
print(f"Submitting {len(answers_payload)} answers to: {submit_url}")
|
| 101 |
try:
|
| 102 |
response = requests.post(submit_url, json=submission_data, timeout=60)
|
| 103 |
response.raise_for_status()
|
| 104 |
result_data = response.json()
|
| 105 |
final_status = (
|
| 106 |
-
f"Submission Successful!\n"
|
| 107 |
f"User: {result_data.get('username')}\n"
|
| 108 |
-
f"
|
| 109 |
-
f"({result_data.get('correct_count', '?')}/{result_data.get('total_attempted', '?')}
|
| 110 |
-
f"Message: {result_data.get('message', 'No message
|
| 111 |
)
|
| 112 |
-
|
| 113 |
-
results_df = pd.DataFrame(results_log)
|
| 114 |
-
return final_status, results_df
|
| 115 |
-
except requests.exceptions.HTTPError as e:
|
| 116 |
-
error_detail = f"Server responded with status {e.response.status_code}."
|
| 117 |
-
try:
|
| 118 |
-
error_json = e.response.json()
|
| 119 |
-
error_detail += f" Detail: {error_json.get('detail', e.response.text)}"
|
| 120 |
-
except requests.exceptions.JSONDecodeError:
|
| 121 |
-
error_detail += f" Response: {e.response.text[:500]}"
|
| 122 |
-
status_message = f"Submission Failed: {error_detail}"
|
| 123 |
-
print(status_message)
|
| 124 |
-
results_df = pd.DataFrame(results_log)
|
| 125 |
-
return status_message, results_df
|
| 126 |
-
except requests.exceptions.Timeout:
|
| 127 |
-
status_message = "Submission Failed: The request timed out."
|
| 128 |
-
print(status_message)
|
| 129 |
-
results_df = pd.DataFrame(results_log)
|
| 130 |
-
return status_message, results_df
|
| 131 |
-
except requests.exceptions.RequestException as e:
|
| 132 |
-
status_message = f"Submission Failed: Network error - {e}"
|
| 133 |
-
print(status_message)
|
| 134 |
-
results_df = pd.DataFrame(results_log)
|
| 135 |
-
return status_message, results_df
|
| 136 |
except Exception as e:
|
| 137 |
-
|
| 138 |
-
print(status_message)
|
| 139 |
-
results_df = pd.DataFrame(results_log)
|
| 140 |
-
return status_message, results_df
|
| 141 |
|
| 142 |
-
|
| 143 |
-
# --- Build Gradio Interface using Blocks ---
|
| 144 |
with gr.Blocks() as demo:
|
| 145 |
-
gr.Markdown("# Basic Agent Evaluation Runner")
|
|
|
|
| 146 |
gr.Markdown(
|
| 147 |
"""
|
| 148 |
**Instructions:**
|
| 149 |
|
| 150 |
-
1.
|
| 151 |
-
2.
|
| 152 |
-
3.
|
| 153 |
|
| 154 |
---
|
| 155 |
-
|
| 156 |
-
Once clicking on the "submit button, it can take quite some time ( this is the time for the agent to go through all the questions).
|
| 157 |
-
This space provides a basic setup and is intentionally sub-optimal to encourage you to develop your own, more robust solution. For instance for the delay process of the submit button, a solution could be to cache the answers and submit in a seperate action or even to answer the questions in async.
|
| 158 |
"""
|
| 159 |
)
|
| 160 |
|
| 161 |
gr.LoginButton()
|
| 162 |
-
|
| 163 |
run_button = gr.Button("Run Evaluation & Submit All Answers")
|
| 164 |
|
| 165 |
status_output = gr.Textbox(label="Run Status / Submission Result", lines=5, interactive=False)
|
| 166 |
-
# Removed max_rows=10 from DataFrame constructor
|
| 167 |
results_table = gr.DataFrame(label="Questions and Agent Answers", wrap=True)
|
| 168 |
|
| 169 |
run_button.click(
|
|
@@ -171,26 +130,24 @@ with gr.Blocks() as demo:
|
|
| 171 |
outputs=[status_output, results_table]
|
| 172 |
)
|
| 173 |
|
|
|
|
| 174 |
if __name__ == "__main__":
|
| 175 |
print("\n" + "-"*30 + " App Starting " + "-"*30)
|
| 176 |
-
# Check for SPACE_HOST and SPACE_ID at startup for information
|
| 177 |
space_host_startup = os.getenv("SPACE_HOST")
|
| 178 |
-
space_id_startup = os.getenv("SPACE_ID")
|
| 179 |
|
| 180 |
if space_host_startup:
|
| 181 |
-
print(f"β
SPACE_HOST
|
| 182 |
-
print(f"
|
| 183 |
else:
|
| 184 |
-
print("βΉοΈ
|
| 185 |
|
| 186 |
-
if space_id_startup:
|
| 187 |
-
print(f"β
SPACE_ID
|
| 188 |
-
print(f"
|
| 189 |
-
print(f" Repo Tree URL: https://huggingface.co/spaces/{space_id_startup}/tree/main")
|
| 190 |
else:
|
| 191 |
-
print("βΉοΈ
|
| 192 |
-
|
| 193 |
-
print("-"*(60 + len(" App Starting ")) + "\n")
|
| 194 |
|
| 195 |
-
print("
|
| 196 |
-
|
|
|
|
|
|
| 1 |
import os
|
| 2 |
import gradio as gr
|
| 3 |
import requests
|
|
|
|
| 4 |
import pandas as pd
|
| 5 |
+
from transformers import pipeline
|
| 6 |
+
from typing import Optional
|
| 7 |
|
|
|
|
| 8 |
# --- Constants ---
|
| 9 |
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"
|
| 10 |
|
| 11 |
+
# --- Smart Agent Definition ---
|
| 12 |
+
from transformers import pipeline
|
| 13 |
+
|
| 14 |
class BasicAgent:
|
| 15 |
def __init__(self):
|
| 16 |
+
print("Loading advanced model pipeline...")
|
| 17 |
+
# You can swap this with another model if you want (like mistralai/Mistral-7B-Instruct-v0.2 if you use HF Inference API)
|
| 18 |
+
self.generator = pipeline("text2text-generation", model="google/flan-t5-large")
|
| 19 |
+
|
| 20 |
def __call__(self, question: str) -> str:
|
| 21 |
+
try:
|
| 22 |
+
prompt = f"Answer the following question clearly and concisely:\n{question.strip()}"
|
| 23 |
+
response = self.generator(prompt, max_new_tokens=128, do_sample=False, temperature=0.0)
|
| 24 |
+
answer = response[0]["generated_text"].strip()
|
| 25 |
+
return answer
|
| 26 |
+
except Exception as e:
|
| 27 |
+
print(f"Agent failed to answer question: {e}")
|
| 28 |
+
return "ERROR"
|
| 29 |
+
|
| 30 |
+
|
| 31 |
+
# --- Submission Logic ---
|
| 32 |
+
def run_and_submit_all(profile: Optional[gr.OAuthProfile]):
|
| 33 |
+
space_id = os.getenv("SPACE_ID")
|
| 34 |
+
if not profile:
|
|
|
|
|
|
|
|
|
|
| 35 |
print("User not logged in.")
|
| 36 |
+
return "Please login to Hugging Face with the button.", None
|
| 37 |
+
|
| 38 |
+
username = profile.username.strip()
|
| 39 |
+
print(f"User logged in: {username}")
|
| 40 |
+
|
| 41 |
+
agent_code = f"https://huggingface.co/spaces/{space_id}/tree/main"
|
| 42 |
+
print(f"Agent code link: {agent_code}")
|
| 43 |
|
| 44 |
api_url = DEFAULT_API_URL
|
| 45 |
questions_url = f"{api_url}/questions"
|
| 46 |
submit_url = f"{api_url}/submit"
|
| 47 |
|
|
|
|
| 48 |
try:
|
| 49 |
agent = BasicAgent()
|
| 50 |
except Exception as e:
|
|
|
|
| 51 |
return f"Error initializing agent: {e}", None
|
|
|
|
|
|
|
|
|
|
| 52 |
|
|
|
|
| 53 |
print(f"Fetching questions from: {questions_url}")
|
| 54 |
try:
|
| 55 |
response = requests.get(questions_url, timeout=15)
|
| 56 |
response.raise_for_status()
|
| 57 |
questions_data = response.json()
|
| 58 |
if not questions_data:
|
| 59 |
+
return "Fetched questions list is empty.", None
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 60 |
except Exception as e:
|
| 61 |
+
return f"Error fetching questions: {e}", None
|
|
|
|
| 62 |
|
|
|
|
| 63 |
results_log = []
|
| 64 |
answers_payload = []
|
| 65 |
+
|
| 66 |
print(f"Running agent on {len(questions_data)} questions...")
|
| 67 |
for item in questions_data:
|
| 68 |
task_id = item.get("task_id")
|
| 69 |
question_text = item.get("question")
|
| 70 |
+
if not task_id or not question_text:
|
|
|
|
| 71 |
continue
|
| 72 |
try:
|
| 73 |
+
answer = agent(question_text)
|
| 74 |
+
answers_payload.append({"task_id": task_id, "submitted_answer": answer})
|
| 75 |
+
results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": answer})
|
| 76 |
except Exception as e:
|
| 77 |
+
error_msg = f"AGENT ERROR: {e}"
|
| 78 |
+
results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": error_msg})
|
| 79 |
|
| 80 |
if not answers_payload:
|
| 81 |
+
return "No answers generated for submission.", pd.DataFrame(results_log)
|
|
|
|
| 82 |
|
| 83 |
+
submission_data = {
|
| 84 |
+
"username": username,
|
| 85 |
+
"agent_code": agent_code,
|
| 86 |
+
"answers": answers_payload
|
| 87 |
+
}
|
| 88 |
|
| 89 |
+
print(f"Submitting {len(answers_payload)} answers...")
|
|
|
|
| 90 |
try:
|
| 91 |
response = requests.post(submit_url, json=submission_data, timeout=60)
|
| 92 |
response.raise_for_status()
|
| 93 |
result_data = response.json()
|
| 94 |
final_status = (
|
| 95 |
+
f"β
Submission Successful!\n"
|
| 96 |
f"User: {result_data.get('username')}\n"
|
| 97 |
+
f"Score: {result_data.get('score', 'N/A')}% "
|
| 98 |
+
f"({result_data.get('correct_count', '?')}/{result_data.get('total_attempted', '?')})\n"
|
| 99 |
+
f"Message: {result_data.get('message', 'No message')}"
|
| 100 |
)
|
| 101 |
+
return final_status, pd.DataFrame(results_log)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 102 |
except Exception as e:
|
| 103 |
+
return f"β Submission failed: {e}", pd.DataFrame(results_log)
|
|
|
|
|
|
|
|
|
|
| 104 |
|
| 105 |
+
# --- Gradio Interface ---
|
|
|
|
| 106 |
with gr.Blocks() as demo:
|
| 107 |
+
gr.Markdown("# π€ Basic Agent Evaluation Runner")
|
| 108 |
+
|
| 109 |
gr.Markdown(
|
| 110 |
"""
|
| 111 |
**Instructions:**
|
| 112 |
|
| 113 |
+
1. Clone this space and implement your agent logic.
|
| 114 |
+
2. Log in with your Hugging Face account using the button below.
|
| 115 |
+
3. Click **Run Evaluation & Submit All Answers** to test and submit your agent.
|
| 116 |
|
| 117 |
---
|
| 118 |
+
β οΈ Note: The first run may take time depending on model and question count.
|
|
|
|
|
|
|
| 119 |
"""
|
| 120 |
)
|
| 121 |
|
| 122 |
gr.LoginButton()
|
|
|
|
| 123 |
run_button = gr.Button("Run Evaluation & Submit All Answers")
|
| 124 |
|
| 125 |
status_output = gr.Textbox(label="Run Status / Submission Result", lines=5, interactive=False)
|
|
|
|
| 126 |
results_table = gr.DataFrame(label="Questions and Agent Answers", wrap=True)
|
| 127 |
|
| 128 |
run_button.click(
|
|
|
|
| 130 |
outputs=[status_output, results_table]
|
| 131 |
)
|
| 132 |
|
| 133 |
+
# --- Run App ---
|
| 134 |
if __name__ == "__main__":
|
| 135 |
print("\n" + "-"*30 + " App Starting " + "-"*30)
|
|
|
|
| 136 |
space_host_startup = os.getenv("SPACE_HOST")
|
| 137 |
+
space_id_startup = os.getenv("SPACE_ID")
|
| 138 |
|
| 139 |
if space_host_startup:
|
| 140 |
+
print(f"β
SPACE_HOST: {space_host_startup}")
|
| 141 |
+
print(f"Runtime URL: https://{space_host_startup}.hf.space")
|
| 142 |
else:
|
| 143 |
+
print("βΉοΈ SPACE_HOST not set.")
|
| 144 |
|
| 145 |
+
if space_id_startup:
|
| 146 |
+
print(f"β
SPACE_ID: {space_id_startup}")
|
| 147 |
+
print(f"Repo: https://huggingface.co/spaces/{space_id_startup}")
|
|
|
|
| 148 |
else:
|
| 149 |
+
print("βΉοΈ SPACE_ID not set.")
|
|
|
|
|
|
|
| 150 |
|
| 151 |
+
print("-" * 80)
|
| 152 |
+
print("Launching Gradio App...")
|
| 153 |
+
demo.launch(debug=True, share=False)
|