base upload
#204
by
onkar127
- opened
- agentsList.py +340 -0
- app.py +22 -5
- tools/__init__.py +19 -0
- tools/chess_tools.py +126 -0
- tools/classifier_tool.py +89 -0
- tools/content_retriever_tool.py +89 -0
- tools/get_attachment_tool.py +77 -0
- tools/google_search_tools.py +90 -0
- tools/speech_recognition_tool.py +113 -0
- tools/youtube_video_tool.py +383 -0
agentsList.py
ADDED
|
@@ -0,0 +1,340 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from typing import TypedDict, Optional
|
| 2 |
+
from langgraph.graph import StateGraph, START, END
|
| 3 |
+
from langchain_openai import ChatOpenAI
|
| 4 |
+
from langchain_core.messages import HumanMessage
|
| 5 |
+
from rich.console import Console
|
| 6 |
+
from smolagents import (
|
| 7 |
+
CodeAgent,
|
| 8 |
+
ToolCallingAgent,
|
| 9 |
+
OpenAIServerModel,
|
| 10 |
+
AgentLogger,
|
| 11 |
+
LogLevel,
|
| 12 |
+
Panel,
|
| 13 |
+
Text,
|
| 14 |
+
)
|
| 15 |
+
from tools import (
|
| 16 |
+
GetAttachmentTool,
|
| 17 |
+
GoogleSearchTool,
|
| 18 |
+
GoogleSiteSearchTool,
|
| 19 |
+
ContentRetrieverTool,
|
| 20 |
+
YoutubeVideoTool,
|
| 21 |
+
SpeechRecognitionTool,
|
| 22 |
+
ClassifierTool,
|
| 23 |
+
ImageToChessBoardFENTool,
|
| 24 |
+
chess_engine_locator,
|
| 25 |
+
)
|
| 26 |
+
import openai
|
| 27 |
+
import backoff
|
| 28 |
+
|
| 29 |
+
|
| 30 |
+
|
| 31 |
+
def create_genai_agent(verbosity: int = LogLevel.INFO):
|
| 32 |
+
get_attachment_tool = GetAttachmentTool()
|
| 33 |
+
speech_recognition_tool = SpeechRecognitionTool()
|
| 34 |
+
env_tools = [
|
| 35 |
+
get_attachment_tool,
|
| 36 |
+
]
|
| 37 |
+
model = OpenAIServerModel(model_id="gpt-4.1")
|
| 38 |
+
console = Console(record=True)
|
| 39 |
+
logger = AgentLogger(level=verbosity, console=console)
|
| 40 |
+
steps_buffer = []
|
| 41 |
+
|
| 42 |
+
|
| 43 |
+
def capture_step_log(agent) -> None:
|
| 44 |
+
steps_buffer.append(console.export_text(clear=True))
|
| 45 |
+
|
| 46 |
+
|
| 47 |
+
agents = {
|
| 48 |
+
agent.name: agent
|
| 49 |
+
for agent in [
|
| 50 |
+
ToolCallingAgent(
|
| 51 |
+
name="general_assistant",
|
| 52 |
+
description="Answers questions for best of knowledge and common reasoning grounded on already known information. Can understand multimedia including audio and video files and YouTube.",
|
| 53 |
+
model=model,
|
| 54 |
+
tools=env_tools
|
| 55 |
+
+ [
|
| 56 |
+
speech_recognition_tool,
|
| 57 |
+
YoutubeVideoTool(
|
| 58 |
+
client=model.client,
|
| 59 |
+
speech_recognition_tool=speech_recognition_tool,
|
| 60 |
+
frames_interval=3,
|
| 61 |
+
chunk_duration=60,
|
| 62 |
+
debug=True,
|
| 63 |
+
),
|
| 64 |
+
ClassifierTool(
|
| 65 |
+
client=model.client,
|
| 66 |
+
model_id="gpt-4.1-mini",
|
| 67 |
+
),
|
| 68 |
+
],
|
| 69 |
+
logger=logger,
|
| 70 |
+
step_callbacks=[capture_step_log],
|
| 71 |
+
),
|
| 72 |
+
ToolCallingAgent(
|
| 73 |
+
name="web_researcher",
|
| 74 |
+
description="Answers questions that require grounding in unknown information through search on web sites and other online resources.",
|
| 75 |
+
tools=env_tools
|
| 76 |
+
+ [
|
| 77 |
+
GoogleSearchTool(),
|
| 78 |
+
GoogleSiteSearchTool(),
|
| 79 |
+
ContentRetrieverTool(),
|
| 80 |
+
],
|
| 81 |
+
model=model,
|
| 82 |
+
planning_interval=3,
|
| 83 |
+
max_steps=9,
|
| 84 |
+
logger=logger,
|
| 85 |
+
step_callbacks=[capture_step_log],
|
| 86 |
+
),
|
| 87 |
+
CodeAgent(
|
| 88 |
+
name="data_analyst",
|
| 89 |
+
description="Data analyst with advanced skills in statistic, handling tabular data and related Python packages.",
|
| 90 |
+
tools=env_tools,
|
| 91 |
+
additional_authorized_imports=[
|
| 92 |
+
"numpy",
|
| 93 |
+
"pandas",
|
| 94 |
+
"tabulate",
|
| 95 |
+
"matplotlib",
|
| 96 |
+
"seaborn",
|
| 97 |
+
],
|
| 98 |
+
model=model,
|
| 99 |
+
logger=logger,
|
| 100 |
+
step_callbacks=[capture_step_log],
|
| 101 |
+
),
|
| 102 |
+
CodeAgent(
|
| 103 |
+
name="chess_player",
|
| 104 |
+
description="Chess grandmaster empowered by chess engine. Always thinks at least 100 steps ahead.",
|
| 105 |
+
tools=env_tools
|
| 106 |
+
+ [
|
| 107 |
+
ImageToChessBoardFENTool(client=model.client),
|
| 108 |
+
chess_engine_locator,
|
| 109 |
+
],
|
| 110 |
+
additional_authorized_imports=[
|
| 111 |
+
"chess",
|
| 112 |
+
"chess.engine",
|
| 113 |
+
],
|
| 114 |
+
model=model,
|
| 115 |
+
logger=logger,
|
| 116 |
+
step_callbacks=[capture_step_log],
|
| 117 |
+
),
|
| 118 |
+
]
|
| 119 |
+
}
|
| 120 |
+
|
| 121 |
+
|
| 122 |
+
class GAIATask(TypedDict):
|
| 123 |
+
task_id: Optional[str | None] = None
|
| 124 |
+
question: str
|
| 125 |
+
steps: list[str] = []
|
| 126 |
+
agent: Optional[str | None] = None
|
| 127 |
+
raw_answer: Optional[str | None] = None
|
| 128 |
+
final_answer: Optional[str | None] = None
|
| 129 |
+
|
| 130 |
+
|
| 131 |
+
llm = ChatOpenAI(model="gpt-4.1")
|
| 132 |
+
logger = AgentLogger(level=verbosity)
|
| 133 |
+
|
| 134 |
+
|
| 135 |
+
@backoff.on_exception(backoff.expo, openai.RateLimitError, max_time=60, max_tries=6)
|
| 136 |
+
def llm_invoke_with_retry(messages):
|
| 137 |
+
response = llm.invoke(messages)
|
| 138 |
+
return response
|
| 139 |
+
|
| 140 |
+
|
| 141 |
+
def read_question(state: GAIATask):
|
| 142 |
+
logger.log_task(
|
| 143 |
+
content=state["question"].strip(),
|
| 144 |
+
subtitle=f"LangGraph with {type(llm).__name__} - {llm.model_name}",
|
| 145 |
+
level=LogLevel.INFO,
|
| 146 |
+
title="Final Assignment Agent for Hugging Face Agents Course",
|
| 147 |
+
)
|
| 148 |
+
get_attachment_tool.attachment_for(state["task_id"])
|
| 149 |
+
|
| 150 |
+
return {
|
| 151 |
+
"steps": [],
|
| 152 |
+
"agent": None,
|
| 153 |
+
"raw_answer": None,
|
| 154 |
+
"final_answer": None,
|
| 155 |
+
}
|
| 156 |
+
|
| 157 |
+
|
| 158 |
+
def select_agent(state: GAIATask):
|
| 159 |
+
agents_description = "\n\n".join(
|
| 160 |
+
[
|
| 161 |
+
f"AGENT NAME: {a.name}\nAGENT DESCRIPTION: {a.description}"
|
| 162 |
+
for a in agents.values()
|
| 163 |
+
]
|
| 164 |
+
)
|
| 165 |
+
|
| 166 |
+
prompt = f"""\
|
| 167 |
+
You are a general AI assistant.
|
| 168 |
+
|
| 169 |
+
I will provide you a question and a list of agents with their descriptions.
|
| 170 |
+
Your task is to select the most appropriate agent to answer the question.
|
| 171 |
+
You can select one of the agents or decide that no agent is needed.
|
| 172 |
+
|
| 173 |
+
If question has attachment only agent can answer it.
|
| 174 |
+
|
| 175 |
+
QUESTION:
|
| 176 |
+
{state["question"]}
|
| 177 |
+
|
| 178 |
+
{agents_description}
|
| 179 |
+
|
| 180 |
+
Now, return the name of the agent you selected or "no agent needed" if you think that no agent is needed.
|
| 181 |
+
"""
|
| 182 |
+
|
| 183 |
+
response = llm_invoke_with_retry([HumanMessage(content=prompt)])
|
| 184 |
+
agent_name = response.content.strip()
|
| 185 |
+
|
| 186 |
+
if agent_name in agents:
|
| 187 |
+
logger.log(
|
| 188 |
+
f"Agent {agent_name} selected for solving the task.",
|
| 189 |
+
level=LogLevel.DEBUG,
|
| 190 |
+
)
|
| 191 |
+
return {
|
| 192 |
+
"agent": agent_name,
|
| 193 |
+
"steps": state.get("steps", [])
|
| 194 |
+
+ [
|
| 195 |
+
f"Agent '{agent_name}' selected for task execution.",
|
| 196 |
+
],
|
| 197 |
+
}
|
| 198 |
+
elif agent_name == "no agent needed":
|
| 199 |
+
logger.log(
|
| 200 |
+
"No appropriate agent found in the list. No agent will be used.",
|
| 201 |
+
level=LogLevel.DEBUG,
|
| 202 |
+
)
|
| 203 |
+
return {
|
| 204 |
+
"agent": None,
|
| 205 |
+
"steps": state.get("steps", [])
|
| 206 |
+
+ [
|
| 207 |
+
"A decision is made to solve the task directly without invoking any agent.",
|
| 208 |
+
],
|
| 209 |
+
}
|
| 210 |
+
else:
|
| 211 |
+
logger.log(
|
| 212 |
+
f"[bold red]Warning to user: Unexpected agent name '{agent_name}' selected. No agent will be used.[/bold red]",
|
| 213 |
+
level=LogLevel.INFO,
|
| 214 |
+
)
|
| 215 |
+
return {
|
| 216 |
+
"agent": None,
|
| 217 |
+
"steps": state.get("steps", [])
|
| 218 |
+
+ [
|
| 219 |
+
f"Attempt to select non-existing agent '{agent_name}'. No agent will be used.",
|
| 220 |
+
],
|
| 221 |
+
}
|
| 222 |
+
|
| 223 |
+
|
| 224 |
+
def delegate_to_agent(state: GAIATask):
|
| 225 |
+
agent_name = state.get("agent", None)
|
| 226 |
+
if not agent_name:
|
| 227 |
+
raise ValueError("Agent not selected.")
|
| 228 |
+
if agent_name not in agents:
|
| 229 |
+
raise ValueError(f"Agent '{agent_name}' is not available.")
|
| 230 |
+
|
| 231 |
+
logger.log(
|
| 232 |
+
Panel(Text(f"Calling agent: {agent_name}.")),
|
| 233 |
+
level=LogLevel.INFO,
|
| 234 |
+
)
|
| 235 |
+
|
| 236 |
+
agent = agents[agent_name]
|
| 237 |
+
agent_answer = agent.run(task=state["question"])
|
| 238 |
+
steps = [f"Agent '{agent_name}' step:\n{s}" for s in steps_buffer]
|
| 239 |
+
steps_buffer.clear()
|
| 240 |
+
return {
|
| 241 |
+
"raw_answer": agent_answer,
|
| 242 |
+
"steps": state.get("steps", []) + steps,
|
| 243 |
+
}
|
| 244 |
+
|
| 245 |
+
|
| 246 |
+
def one_shot_answering(state: GAIATask):
|
| 247 |
+
response = llm_invoke_with_retry([HumanMessage(content=state.get("question"))])
|
| 248 |
+
return {
|
| 249 |
+
"raw_answer": response.content,
|
| 250 |
+
"steps": state.get("steps", [])
|
| 251 |
+
+ [
|
| 252 |
+
f"One-shot answer:\n{response.content}",
|
| 253 |
+
],
|
| 254 |
+
}
|
| 255 |
+
|
| 256 |
+
|
| 257 |
+
def refine_answer(state: GAIATask):
|
| 258 |
+
question = state.get("question")
|
| 259 |
+
answer = state.get("raw_answer", None)
|
| 260 |
+
if not answer:
|
| 261 |
+
return {"final_answer": "No answer."}
|
| 262 |
+
|
| 263 |
+
prompt = f"""\
|
| 264 |
+
You are a general AI assistant.
|
| 265 |
+
|
| 266 |
+
I will provide you a question and correct answer to it. Answer is correct but may be too verbose or not follow the rules below.
|
| 267 |
+
Your task is to rephrase answer according to rules below.
|
| 268 |
+
|
| 269 |
+
Answer should be a number OR as few words as possible OR a comma separated list of numbers and/or strings.
|
| 270 |
+
|
| 271 |
+
If you are asked for a number, don't use comma to write your number neither use units such as $ or percent sign unless specified otherwise.
|
| 272 |
+
If you are asked for a string, don't use articles, neither abbreviations (e.g. for cities), and write the digits in plain text unless specified otherwise.
|
| 273 |
+
If you are asked for a comma separated list, apply the above rules depending of whether the element to be put in the list is a number or a string.
|
| 274 |
+
|
| 275 |
+
If you are asked for a comma separated list, use space after comma and before next element of the list unless other directly specified in a question.
|
| 276 |
+
Check question context to define if letters case matters. Do not change case if not prescribed by other rules or question.
|
| 277 |
+
If you are not asked for the list, capitalize the first letter of the answer unless it changes meaning of the answer.
|
| 278 |
+
If answer is number, use digits only not words unless other directly specified in a question.
|
| 279 |
+
If answer is not full sentence, do not add period at the end.
|
| 280 |
+
|
| 281 |
+
Preserve all items if the answer is a list.
|
| 282 |
+
|
| 283 |
+
QUESTION:
|
| 284 |
+
{question}
|
| 285 |
+
|
| 286 |
+
ANSWER:
|
| 287 |
+
{answer}
|
| 288 |
+
"""
|
| 289 |
+
response = llm_invoke_with_retry([HumanMessage(content=prompt)])
|
| 290 |
+
refined_answer = response.content.strip()
|
| 291 |
+
logger.log(
|
| 292 |
+
Text(f"GAIA final answer: {refined_answer}", style="bold #d4b702"),
|
| 293 |
+
level=LogLevel.INFO,
|
| 294 |
+
)
|
| 295 |
+
return {
|
| 296 |
+
"final_answer": refined_answer,
|
| 297 |
+
"steps": state.get("steps", [])
|
| 298 |
+
+ [
|
| 299 |
+
"Refining the answer according to GAIA benchmark rules.",
|
| 300 |
+
f"FINAL ANSWER: {response.content}",
|
| 301 |
+
],
|
| 302 |
+
}
|
| 303 |
+
|
| 304 |
+
|
| 305 |
+
def route_task(state: GAIATask) -> str:
|
| 306 |
+
if state.get("agent") in agents:
|
| 307 |
+
return "agent selected"
|
| 308 |
+
else:
|
| 309 |
+
return "no agent matched"
|
| 310 |
+
|
| 311 |
+
|
| 312 |
+
# Create the graph
|
| 313 |
+
gaia_graph = StateGraph(GAIATask)
|
| 314 |
+
|
| 315 |
+
# Add nodes
|
| 316 |
+
gaia_graph.add_node("read_question", read_question)
|
| 317 |
+
gaia_graph.add_node("select_agent", select_agent)
|
| 318 |
+
gaia_graph.add_node("delegate_to_agent", delegate_to_agent)
|
| 319 |
+
gaia_graph.add_node("one_shot_answering", one_shot_answering)
|
| 320 |
+
gaia_graph.add_node("refine_answer", refine_answer)
|
| 321 |
+
|
| 322 |
+
# Start the edges
|
| 323 |
+
gaia_graph.add_edge(START, "read_question")
|
| 324 |
+
# Add edges - defining the flow
|
| 325 |
+
gaia_graph.add_edge("read_question", "select_agent")
|
| 326 |
+
|
| 327 |
+
# Add conditional branching from select_agent
|
| 328 |
+
gaia_graph.add_conditional_edges(
|
| 329 |
+
"select_agent",
|
| 330 |
+
route_task,
|
| 331 |
+
{"agent selected": "delegate_to_agent", "no agent matched": "one_shot_answering"},
|
| 332 |
+
)
|
| 333 |
+
|
| 334 |
+
# Add the final edges
|
| 335 |
+
gaia_graph.add_edge("delegate_to_agent", "refine_answer")
|
| 336 |
+
gaia_graph.add_edge("one_shot_answering", "refine_answer")
|
| 337 |
+
gaia_graph.add_edge("refine_answer", END)
|
| 338 |
+
|
| 339 |
+
gaia = gaia_graph.compile()
|
| 340 |
+
return gaia
|
app.py
CHANGED
|
@@ -3,21 +3,26 @@ import gradio as gr
|
|
| 3 |
import requests
|
| 4 |
import inspect
|
| 5 |
import pandas as pd
|
|
|
|
| 6 |
|
| 7 |
# (Keep Constants as is)
|
| 8 |
# --- Constants ---
|
| 9 |
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"
|
| 10 |
|
| 11 |
# --- Basic Agent Definition ---
|
| 12 |
-
# ----- THIS IS WERE YOU CAN BUILD WHAT YOU WANT ------
|
| 13 |
class BasicAgent:
|
| 14 |
def __init__(self):
|
|
|
|
| 15 |
print("BasicAgent initialized.")
|
| 16 |
def __call__(self, question: str) -> str:
|
| 17 |
print(f"Agent received question (first 50 chars): {question[:50]}...")
|
| 18 |
-
|
| 19 |
-
|
| 20 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 21 |
|
| 22 |
def run_and_submit_all( profile: gr.OAuthProfile | None):
|
| 23 |
"""
|
|
@@ -34,6 +39,18 @@ def run_and_submit_all( profile: gr.OAuthProfile | None):
|
|
| 34 |
print("User not logged in.")
|
| 35 |
return "Please Login to Hugging Face with the button.", None
|
| 36 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 37 |
api_url = DEFAULT_API_URL
|
| 38 |
questions_url = f"{api_url}/questions"
|
| 39 |
submit_url = f"{api_url}/submit"
|
|
@@ -80,7 +97,7 @@ def run_and_submit_all( profile: gr.OAuthProfile | None):
|
|
| 80 |
print(f"Skipping item with missing task_id or question: {item}")
|
| 81 |
continue
|
| 82 |
try:
|
| 83 |
-
submitted_answer = agent(question_text)
|
| 84 |
answers_payload.append({"task_id": task_id, "submitted_answer": submitted_answer})
|
| 85 |
results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": submitted_answer})
|
| 86 |
except Exception as e:
|
|
|
|
| 3 |
import requests
|
| 4 |
import inspect
|
| 5 |
import pandas as pd
|
| 6 |
+
import agentsList
|
| 7 |
|
| 8 |
# (Keep Constants as is)
|
| 9 |
# --- Constants ---
|
| 10 |
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"
|
| 11 |
|
| 12 |
# --- Basic Agent Definition ---
|
|
|
|
| 13 |
class BasicAgent:
|
| 14 |
def __init__(self):
|
| 15 |
+
self.genaiAgent = agentsList.create_genai_agent()
|
| 16 |
print("BasicAgent initialized.")
|
| 17 |
def __call__(self, question: str) -> str:
|
| 18 |
print(f"Agent received question (first 50 chars): {question[:50]}...")
|
| 19 |
+
task = self.genaiAgent.invoke({
|
| 20 |
+
"task_id": task_id,
|
| 21 |
+
"question": question,
|
| 22 |
+
})
|
| 23 |
+
final_answer = task.get("final_answer")
|
| 24 |
+
print(f"Agent returning fixed answer: {final_answer}")
|
| 25 |
+
return task["final_answer"]
|
| 26 |
|
| 27 |
def run_and_submit_all( profile: gr.OAuthProfile | None):
|
| 28 |
"""
|
|
|
|
| 39 |
print("User not logged in.")
|
| 40 |
return "Please Login to Hugging Face with the button.", None
|
| 41 |
|
| 42 |
+
# --- Allow only space owner to run agent to avoid misuse ---
|
| 43 |
+
if not space_id.startswith(username.strip()):
|
| 44 |
+
print("User is not an owner of the space. Please duplicate space and configure OPENAI_API_KEY, HF_TOKEN, GOOGLE_SEARCH_API_KEY, and GOOGLE_SEARCH_ENGINE_ID environment variables.")
|
| 45 |
+
return "Please duplicate space to your account to run the agent.", None
|
| 46 |
+
|
| 47 |
+
# --- Check for required environment variables ---
|
| 48 |
+
required_env_vars = ["OPENAI_API_KEY", "HF_TOKEN", "GOOGLE_SEARCH_API_KEY", "GOOGLE_SEARCH_ENGINE_ID"]
|
| 49 |
+
missing_env_vars = [var for var in required_env_vars if not os.getenv(var)]
|
| 50 |
+
if missing_env_vars:
|
| 51 |
+
print(f"Missing environment variables: {', '.join(missing_env_vars)}")
|
| 52 |
+
return f"Missing environment variables: {', '.join(missing_env_vars)}", None
|
| 53 |
+
|
| 54 |
api_url = DEFAULT_API_URL
|
| 55 |
questions_url = f"{api_url}/questions"
|
| 56 |
submit_url = f"{api_url}/submit"
|
|
|
|
| 97 |
print(f"Skipping item with missing task_id or question: {item}")
|
| 98 |
continue
|
| 99 |
try:
|
| 100 |
+
submitted_answer = agent(task_id=task_id, question=question_text)
|
| 101 |
answers_payload.append({"task_id": task_id, "submitted_answer": submitted_answer})
|
| 102 |
results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": submitted_answer})
|
| 103 |
except Exception as e:
|
tools/__init__.py
ADDED
|
@@ -0,0 +1,19 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from .get_attachment_tool import GetAttachmentTool
|
| 2 |
+
from .google_search_tools import GoogleSearchTool, GoogleSiteSearchTool
|
| 3 |
+
from .content_retriever_tool import ContentRetrieverTool
|
| 4 |
+
from .speech_recognition_tool import SpeechRecognitionTool
|
| 5 |
+
from .youtube_video_tool import YoutubeVideoTool
|
| 6 |
+
from .classifier_tool import ClassifierTool
|
| 7 |
+
from .chess_tools import ImageToChessBoardFENTool, chess_engine_locator
|
| 8 |
+
|
| 9 |
+
__all__ = [
|
| 10 |
+
"GetAttachmentTool",
|
| 11 |
+
"GoogleSearchTool",
|
| 12 |
+
"GoogleSiteSearchTool",
|
| 13 |
+
"ContentRetrieverTool",
|
| 14 |
+
"SpeechRecognitionTool",
|
| 15 |
+
"YoutubeVideoTool",
|
| 16 |
+
"ClassifierTool",
|
| 17 |
+
"ImageToChessBoardFENTool",
|
| 18 |
+
"chess_engine_locator",
|
| 19 |
+
]
|
tools/chess_tools.py
ADDED
|
@@ -0,0 +1,126 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from smolagents import Tool, tool
|
| 2 |
+
from openai import OpenAI
|
| 3 |
+
import shutil
|
| 4 |
+
|
| 5 |
+
|
| 6 |
+
@tool
|
| 7 |
+
def chess_engine_locator() -> str | None:
|
| 8 |
+
"""
|
| 9 |
+
Get the path to the chess engine binary. Can be used with chess.engine.SimpleEngine.popen_uci function from chess.engine Python module.
|
| 10 |
+
Returns:
|
| 11 |
+
str: Path to the chess engine.
|
| 12 |
+
"""
|
| 13 |
+
path = shutil.which("stockfish")
|
| 14 |
+
return path if path else None
|
| 15 |
+
|
| 16 |
+
|
| 17 |
+
class ImageToChessBoardFENTool(Tool):
|
| 18 |
+
name = "image_to_chess_board_fen"
|
| 19 |
+
description = """Convert a chessboard image to board part of the FEN."""
|
| 20 |
+
inputs = {
|
| 21 |
+
"image_url": {
|
| 22 |
+
"type": "string",
|
| 23 |
+
"description": "Public URL of the image (preferred) or base64 encoded image in data URL format.",
|
| 24 |
+
}
|
| 25 |
+
}
|
| 26 |
+
output_type = "string"
|
| 27 |
+
|
| 28 |
+
def __init__(self, client: OpenAI | None = None, **kwargs):
|
| 29 |
+
self.client = client if client is not None else OpenAI()
|
| 30 |
+
super().__init__(**kwargs)
|
| 31 |
+
|
| 32 |
+
def attachment_for(self, task_id: str | None):
|
| 33 |
+
self.task_id = task_id
|
| 34 |
+
|
| 35 |
+
def forward(self, image_url: str) -> str:
|
| 36 |
+
"""
|
| 37 |
+
Convert a chessboard image to board part of the FEN.
|
| 38 |
+
Args:
|
| 39 |
+
image_url (str): Public URL of the image (preferred) or base64 encoded image in data URL format.
|
| 40 |
+
Returns:
|
| 41 |
+
str: Board part of the FEN.
|
| 42 |
+
"""
|
| 43 |
+
client = self.client
|
| 44 |
+
|
| 45 |
+
response = client.responses.create(
|
| 46 |
+
model="gpt-4.1",
|
| 47 |
+
input=[
|
| 48 |
+
{
|
| 49 |
+
"role": "user",
|
| 50 |
+
"content": [
|
| 51 |
+
{
|
| 52 |
+
"type": "input_text",
|
| 53 |
+
"text": "Describe the position of the pieces on the chessboard from the image. Please, nothing else but description.",
|
| 54 |
+
},
|
| 55 |
+
{"type": "input_image", "image_url": image_url},
|
| 56 |
+
],
|
| 57 |
+
}
|
| 58 |
+
],
|
| 59 |
+
)
|
| 60 |
+
|
| 61 |
+
response = client.responses.create(
|
| 62 |
+
model="gpt-4.1",
|
| 63 |
+
input=[
|
| 64 |
+
{
|
| 65 |
+
"role": "user",
|
| 66 |
+
"content": [
|
| 67 |
+
{
|
| 68 |
+
"type": "input_text",
|
| 69 |
+
"text": "Describe the position of the pieces on the chessboard from the image. Please, nothing else but description.",
|
| 70 |
+
},
|
| 71 |
+
],
|
| 72 |
+
}
|
| 73 |
+
]
|
| 74 |
+
+ response.output
|
| 75 |
+
+ [
|
| 76 |
+
{
|
| 77 |
+
"role": "user",
|
| 78 |
+
"content": [
|
| 79 |
+
{
|
| 80 |
+
"type": "input_text",
|
| 81 |
+
"text": """\
|
| 82 |
+
Write down all positions with known pieces.
|
| 83 |
+
Use a standard one-letter code to name pieces.
|
| 84 |
+
|
| 85 |
+
It is important to use the correct case for piece code. Use upper case for white and lower case for black.
|
| 86 |
+
It is important to include information about all the mentioned positions.
|
| 87 |
+
|
| 88 |
+
Describe each position in a new line.
|
| 89 |
+
Follow format: <piece><position> (piece first, than position, no spaces)
|
| 90 |
+
Return nothing but lines with positions.
|
| 91 |
+
""",
|
| 92 |
+
},
|
| 93 |
+
],
|
| 94 |
+
}
|
| 95 |
+
],
|
| 96 |
+
)
|
| 97 |
+
board_pos = response.output_text
|
| 98 |
+
|
| 99 |
+
pos_dict = {}
|
| 100 |
+
for pos_str in board_pos.splitlines():
|
| 101 |
+
pos_str = pos_str.strip()
|
| 102 |
+
if len(pos_str) != 3:
|
| 103 |
+
continue
|
| 104 |
+
piece = pos_str[0]
|
| 105 |
+
pos = pos_str[1:3]
|
| 106 |
+
pos_dict[pos] = piece
|
| 107 |
+
|
| 108 |
+
board_fen = ""
|
| 109 |
+
for rank in range(8, 0, -1):
|
| 110 |
+
empty = 0
|
| 111 |
+
for file_c in range(ord("a"), ord("h") + 1):
|
| 112 |
+
file = chr(file_c)
|
| 113 |
+
square = file + str(rank)
|
| 114 |
+
if square in pos_dict:
|
| 115 |
+
if empty > 0:
|
| 116 |
+
board_fen += str(empty)
|
| 117 |
+
empty = 0
|
| 118 |
+
board_fen += pos_dict[square]
|
| 119 |
+
else:
|
| 120 |
+
empty += 1
|
| 121 |
+
if empty > 0:
|
| 122 |
+
board_fen += str(empty)
|
| 123 |
+
if rank != 1:
|
| 124 |
+
board_fen += "/"
|
| 125 |
+
|
| 126 |
+
return board_fen
|
tools/classifier_tool.py
ADDED
|
@@ -0,0 +1,89 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from smolagents import Tool
|
| 2 |
+
from openai import OpenAI
|
| 3 |
+
|
| 4 |
+
|
| 5 |
+
class ClassifierTool(Tool):
|
| 6 |
+
name = "open_classifier"
|
| 7 |
+
description = """Classifies given items into given categories from perspective of specific knowledge area."""
|
| 8 |
+
inputs = {
|
| 9 |
+
"knowledge_area": {
|
| 10 |
+
"type": "string",
|
| 11 |
+
"description": "The knowledge area that should be used for classification.",
|
| 12 |
+
},
|
| 13 |
+
"environment": { # context make models too verbose
|
| 14 |
+
"type": "string",
|
| 15 |
+
"description": "Couple words that describe environment or location in which items should be classified in case of plural meaning or if only part of item relevant for classification.",
|
| 16 |
+
},
|
| 17 |
+
"categories": {
|
| 18 |
+
"type": "string",
|
| 19 |
+
"description": "Comma separated list of categories to distribute objects.",
|
| 20 |
+
},
|
| 21 |
+
"items": {
|
| 22 |
+
"type": "string",
|
| 23 |
+
"description": "Comma separated list of items to be classified. Please include adjectives if available.",
|
| 24 |
+
},
|
| 25 |
+
}
|
| 26 |
+
output_type = "string"
|
| 27 |
+
|
| 28 |
+
def __init__(
|
| 29 |
+
self,
|
| 30 |
+
client: OpenAI | None = None,
|
| 31 |
+
model_id: str = "gpt-4.1-mini",
|
| 32 |
+
**kwargs,
|
| 33 |
+
):
|
| 34 |
+
self.client = client or OpenAI()
|
| 35 |
+
self.model_id = model_id
|
| 36 |
+
|
| 37 |
+
super().__init__(**kwargs)
|
| 38 |
+
|
| 39 |
+
def forward(
|
| 40 |
+
self, knowledge_area: str, environment: str, categories: str, items: str
|
| 41 |
+
) -> str:
|
| 42 |
+
response = self.client.responses.create(
|
| 43 |
+
model=self.model_id,
|
| 44 |
+
input=[
|
| 45 |
+
{
|
| 46 |
+
"role": "user",
|
| 47 |
+
"content": [
|
| 48 |
+
{
|
| 49 |
+
"type": "input_text",
|
| 50 |
+
"text": self._prompt(
|
| 51 |
+
knowledge_area=knowledge_area,
|
| 52 |
+
context=environment,
|
| 53 |
+
categories=categories,
|
| 54 |
+
items=items,
|
| 55 |
+
),
|
| 56 |
+
},
|
| 57 |
+
],
|
| 58 |
+
}
|
| 59 |
+
],
|
| 60 |
+
)
|
| 61 |
+
answer = response.output_text
|
| 62 |
+
return answer
|
| 63 |
+
|
| 64 |
+
def _prompt(
|
| 65 |
+
self, knowledge_area: str, context: str, categories: str, items: str
|
| 66 |
+
) -> str:
|
| 67 |
+
return f"""\
|
| 68 |
+
You are {knowledge_area} classifier located in {context} context.
|
| 69 |
+
I will provide you a list of items and a list of categories and context in which items should be considered.
|
| 70 |
+
|
| 71 |
+
Your task is to classify the items into the categories.
|
| 72 |
+
Use context to determine the meaning of the items and decide if you need to classify entire item or only part of it.
|
| 73 |
+
|
| 74 |
+
Do not miss any item and do not add any item to the list of categories.
|
| 75 |
+
Use highest probability category for each item.
|
| 76 |
+
You can add category "Other" if you are not sure about the classification.
|
| 77 |
+
|
| 78 |
+
Use only considerations from from the {knowledge_area} perspective.
|
| 79 |
+
Explain your reasoning from {knowledge_area} perspective in {context} context and then provide final answer.
|
| 80 |
+
Important: Do not allow {context} influence your judgment for classification.
|
| 81 |
+
|
| 82 |
+
ITEMS: {items}
|
| 83 |
+
CATEGORIES: {categories}
|
| 84 |
+
|
| 85 |
+
Now provide your reasoning and finalize it with the classification in the following format:
|
| 86 |
+
Category 1: items list
|
| 87 |
+
Category 2: items list
|
| 88 |
+
Other (if needed): items list
|
| 89 |
+
"""
|
tools/content_retriever_tool.py
ADDED
|
@@ -0,0 +1,89 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from smolagents import Tool
|
| 2 |
+
from docling.document_converter import DocumentConverter
|
| 3 |
+
from docling.chunking import HierarchicalChunker
|
| 4 |
+
from sentence_transformers import SentenceTransformer, util
|
| 5 |
+
import torch
|
| 6 |
+
|
| 7 |
+
|
| 8 |
+
class ContentRetrieverTool(Tool):
|
| 9 |
+
name = "retrieve_content"
|
| 10 |
+
description = """Retrieve the content of a webpage or document in markdown format. Supports PDF, DOCX, XLSX, HTML, images, and more."""
|
| 11 |
+
inputs = {
|
| 12 |
+
"url": {
|
| 13 |
+
"type": "string",
|
| 14 |
+
"description": "The URL or local path of the webpage or document to retrieve.",
|
| 15 |
+
},
|
| 16 |
+
"query": {
|
| 17 |
+
"type": "string",
|
| 18 |
+
"description": "The subject on the page you are looking for. The shorter the more relevant content is returned.",
|
| 19 |
+
},
|
| 20 |
+
}
|
| 21 |
+
output_type = "string"
|
| 22 |
+
|
| 23 |
+
def __init__(
|
| 24 |
+
self,
|
| 25 |
+
model_name: str | None = None,
|
| 26 |
+
threshold: float = 0.2,
|
| 27 |
+
**kwargs,
|
| 28 |
+
):
|
| 29 |
+
self.threshold = threshold
|
| 30 |
+
self._document_converter = DocumentConverter()
|
| 31 |
+
self._model = SentenceTransformer(
|
| 32 |
+
model_name if model_name is not None else "all-MiniLM-L6-v2"
|
| 33 |
+
)
|
| 34 |
+
self._chunker = HierarchicalChunker()
|
| 35 |
+
|
| 36 |
+
super().__init__(**kwargs)
|
| 37 |
+
|
| 38 |
+
def forward(self, url: str, query: str) -> str:
|
| 39 |
+
document = self._document_converter.convert(url).document
|
| 40 |
+
|
| 41 |
+
chunks = list(self._chunker.chunk(dl_doc=document))
|
| 42 |
+
if len(chunks) == 0:
|
| 43 |
+
return "No content found."
|
| 44 |
+
|
| 45 |
+
chunks_text = [chunk.text for chunk in chunks]
|
| 46 |
+
chunks_with_context = [self._chunker.contextualize(chunk) for chunk in chunks]
|
| 47 |
+
chunks_context = [
|
| 48 |
+
chunks_with_context[i].replace(chunks_text[i], "").strip()
|
| 49 |
+
for i in range(len(chunks))
|
| 50 |
+
]
|
| 51 |
+
|
| 52 |
+
chunk_embeddings = self._model.encode(chunks_text, convert_to_tensor=True)
|
| 53 |
+
context_embeddings = self._model.encode(chunks_context, convert_to_tensor=True)
|
| 54 |
+
query_embedding = self._model.encode(
|
| 55 |
+
[term.strip() for term in query.split(",") if term.strip()],
|
| 56 |
+
convert_to_tensor=True,
|
| 57 |
+
)
|
| 58 |
+
|
| 59 |
+
selected_indices = [] # aggregate indexes across chunks and context matches and for all queries
|
| 60 |
+
for embeddings in [
|
| 61 |
+
context_embeddings,
|
| 62 |
+
chunk_embeddings,
|
| 63 |
+
]:
|
| 64 |
+
# Compute cosine similarities (returns 1D tensor)
|
| 65 |
+
for cos_scores in util.pytorch_cos_sim(query_embedding, embeddings):
|
| 66 |
+
# Convert to softmax probabilities
|
| 67 |
+
probabilities = torch.nn.functional.softmax(cos_scores, dim=0)
|
| 68 |
+
# Sort by probability descending
|
| 69 |
+
sorted_indices = torch.argsort(probabilities, descending=True)
|
| 70 |
+
# Accumulate until total probability reaches threshold
|
| 71 |
+
|
| 72 |
+
cumulative = 0.0
|
| 73 |
+
for i in sorted_indices:
|
| 74 |
+
cumulative += probabilities[i].item()
|
| 75 |
+
selected_indices.append(i.item())
|
| 76 |
+
if cumulative >= self.threshold:
|
| 77 |
+
break
|
| 78 |
+
|
| 79 |
+
selected_indices = list(
|
| 80 |
+
dict.fromkeys(selected_indices)
|
| 81 |
+
) # remove duplicates and preserve order
|
| 82 |
+
selected_indices = selected_indices[
|
| 83 |
+
::-1
|
| 84 |
+
] # make most relevant items last for better focus
|
| 85 |
+
|
| 86 |
+
if len(selected_indices) == 0:
|
| 87 |
+
return "No content found."
|
| 88 |
+
|
| 89 |
+
return "\n\n".join([chunks_with_context[idx] for idx in selected_indices])
|
tools/get_attachment_tool.py
ADDED
|
@@ -0,0 +1,77 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from smolagents import Tool
|
| 2 |
+
import requests
|
| 3 |
+
from urllib.parse import urljoin
|
| 4 |
+
import base64
|
| 5 |
+
import tempfile
|
| 6 |
+
|
| 7 |
+
|
| 8 |
+
class GetAttachmentTool(Tool):
|
| 9 |
+
name = "get_attachment"
|
| 10 |
+
description = """Retrieves attachment for current task in specified format."""
|
| 11 |
+
inputs = {
|
| 12 |
+
"fmt": {
|
| 13 |
+
"type": "string",
|
| 14 |
+
"description": "Format to retrieve attachment. Options are: URL (preferred), DATA_URL, LOCAL_FILE_PATH, TEXT. URL returns the URL of the file, DATA_URL returns a base64 encoded data URL, LOCAL_FILE_PATH returns a local file path to the downloaded file, and TEXT returns the content of the file as text.",
|
| 15 |
+
"nullable": True,
|
| 16 |
+
"default": "URL",
|
| 17 |
+
}
|
| 18 |
+
}
|
| 19 |
+
output_type = "string"
|
| 20 |
+
|
| 21 |
+
def __init__(
|
| 22 |
+
self,
|
| 23 |
+
agent_evaluation_api: str | None = None,
|
| 24 |
+
task_id: str | None = None,
|
| 25 |
+
**kwargs,
|
| 26 |
+
):
|
| 27 |
+
self.agent_evaluation_api = (
|
| 28 |
+
agent_evaluation_api
|
| 29 |
+
if agent_evaluation_api is not None
|
| 30 |
+
else "https://agents-course-unit4-scoring.hf.space/"
|
| 31 |
+
)
|
| 32 |
+
self.task_id = task_id
|
| 33 |
+
super().__init__(**kwargs)
|
| 34 |
+
|
| 35 |
+
def attachment_for(self, task_id: str | None):
|
| 36 |
+
self.task_id = task_id
|
| 37 |
+
|
| 38 |
+
def forward(self, fmt: str = "URL") -> str:
|
| 39 |
+
fmt = fmt.upper()
|
| 40 |
+
assert fmt in ["URL", "DATA_URL", "LOCAL_FILE_PATH", "TEXT"]
|
| 41 |
+
|
| 42 |
+
if not self.task_id:
|
| 43 |
+
return ""
|
| 44 |
+
|
| 45 |
+
file_url = urljoin(self.agent_evaluation_api, f"files/{self.task_id}")
|
| 46 |
+
if fmt == "URL":
|
| 47 |
+
return file_url
|
| 48 |
+
|
| 49 |
+
response = requests.get(
|
| 50 |
+
file_url,
|
| 51 |
+
headers={
|
| 52 |
+
"Content-Type": "application/json",
|
| 53 |
+
"Accept": "application/json",
|
| 54 |
+
},
|
| 55 |
+
)
|
| 56 |
+
if 400 <= response.status_code < 500:
|
| 57 |
+
return ""
|
| 58 |
+
|
| 59 |
+
response.raise_for_status()
|
| 60 |
+
mime = response.headers.get("content-type", "text/plain")
|
| 61 |
+
if fmt == "TEXT":
|
| 62 |
+
if mime.startswith("text/"):
|
| 63 |
+
return response.text
|
| 64 |
+
else:
|
| 65 |
+
raise ValueError(
|
| 66 |
+
f"Content of file type {mime} cannot be retrieved as TEXT."
|
| 67 |
+
)
|
| 68 |
+
elif fmt == "DATA_URL":
|
| 69 |
+
return f"data:{mime};base64,{base64.b64encode(response.content).decode('utf-8')}"
|
| 70 |
+
elif fmt == "LOCAL_FILE_PATH":
|
| 71 |
+
with tempfile.NamedTemporaryFile(delete=False) as tmp_file:
|
| 72 |
+
tmp_file.write(response.content)
|
| 73 |
+
return tmp_file.name
|
| 74 |
+
else:
|
| 75 |
+
raise ValueError(
|
| 76 |
+
f"Unsupported format: {fmt}. Supported formats are URL, DATA_URL, LOCAL_FILE_PATH, and TEXT."
|
| 77 |
+
)
|
tools/google_search_tools.py
ADDED
|
@@ -0,0 +1,90 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from smolagents import Tool
|
| 2 |
+
from googleapiclient.discovery import build
|
| 3 |
+
import os
|
| 4 |
+
|
| 5 |
+
|
| 6 |
+
class GoogleSearchTool(Tool):
|
| 7 |
+
name = "web_search"
|
| 8 |
+
description = """Performs a google web search for query then returns top search results in markdown format."""
|
| 9 |
+
inputs = {
|
| 10 |
+
"query": {
|
| 11 |
+
"type": "string",
|
| 12 |
+
"description": "The query to perform search.",
|
| 13 |
+
},
|
| 14 |
+
}
|
| 15 |
+
output_type = "string"
|
| 16 |
+
|
| 17 |
+
skip_forward_signature_validation = True
|
| 18 |
+
|
| 19 |
+
def __init__(
|
| 20 |
+
self,
|
| 21 |
+
api_key: str | None = None,
|
| 22 |
+
search_engine_id: str | None = None,
|
| 23 |
+
num_results: int = 10,
|
| 24 |
+
**kwargs,
|
| 25 |
+
):
|
| 26 |
+
api_key = api_key if api_key is not None else os.getenv("GOOGLE_SEARCH_API_KEY")
|
| 27 |
+
if not api_key:
|
| 28 |
+
raise ValueError(
|
| 29 |
+
"Please set the GOOGLE_SEARCH_API_KEY environment variable."
|
| 30 |
+
)
|
| 31 |
+
search_engine_id = (
|
| 32 |
+
search_engine_id
|
| 33 |
+
if search_engine_id is not None
|
| 34 |
+
else os.getenv("GOOGLE_SEARCH_ENGINE_ID")
|
| 35 |
+
)
|
| 36 |
+
if not search_engine_id:
|
| 37 |
+
raise ValueError(
|
| 38 |
+
"Please set the GOOGLE_SEARCH_ENGINE_ID environment variable."
|
| 39 |
+
)
|
| 40 |
+
|
| 41 |
+
self.cse = build("customsearch", "v1", developerKey=api_key).cse()
|
| 42 |
+
self.cx = search_engine_id
|
| 43 |
+
self.num = num_results
|
| 44 |
+
super().__init__(**kwargs)
|
| 45 |
+
|
| 46 |
+
def _collect_params(self) -> dict:
|
| 47 |
+
return {}
|
| 48 |
+
|
| 49 |
+
def forward(self, query: str, *args, **kwargs) -> str:
|
| 50 |
+
params = {
|
| 51 |
+
"q": query,
|
| 52 |
+
"cx": self.cx,
|
| 53 |
+
"fields": "items(title,link,snippet)",
|
| 54 |
+
"num": self.num,
|
| 55 |
+
}
|
| 56 |
+
|
| 57 |
+
params = params | self._collect_params(*args, **kwargs)
|
| 58 |
+
|
| 59 |
+
response = self.cse.list(**params).execute()
|
| 60 |
+
if "items" not in response:
|
| 61 |
+
return "No results found."
|
| 62 |
+
|
| 63 |
+
result = "\n\n".join(
|
| 64 |
+
[
|
| 65 |
+
f"[{item['title']}]({item['link']})\n{item['snippet']}"
|
| 66 |
+
for item in response["items"]
|
| 67 |
+
]
|
| 68 |
+
)
|
| 69 |
+
return result
|
| 70 |
+
|
| 71 |
+
|
| 72 |
+
class GoogleSiteSearchTool(GoogleSearchTool):
|
| 73 |
+
name = "site_search"
|
| 74 |
+
description = """Performs a google search within the website for query then returns top search results in markdown format."""
|
| 75 |
+
inputs = {
|
| 76 |
+
"query": {
|
| 77 |
+
"type": "string",
|
| 78 |
+
"description": "The query to perform search.",
|
| 79 |
+
},
|
| 80 |
+
"site": {
|
| 81 |
+
"type": "string",
|
| 82 |
+
"description": "The domain of the site on which to search.",
|
| 83 |
+
},
|
| 84 |
+
}
|
| 85 |
+
|
| 86 |
+
def _collect_params(self, site: str) -> dict:
|
| 87 |
+
return {
|
| 88 |
+
"siteSearch": site,
|
| 89 |
+
"siteSearchFilter": "i",
|
| 90 |
+
}
|
tools/speech_recognition_tool.py
ADDED
|
@@ -0,0 +1,113 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from smolagents import Tool
|
| 2 |
+
import torch
|
| 3 |
+
from transformers import AutoModelForSpeechSeq2Seq, AutoProcessor, pipeline, logging
|
| 4 |
+
import warnings
|
| 5 |
+
|
| 6 |
+
|
| 7 |
+
class SpeechRecognitionTool(Tool):
|
| 8 |
+
name = "speech_to_text"
|
| 9 |
+
description = """Transcribes speech from audio."""
|
| 10 |
+
|
| 11 |
+
inputs = {
|
| 12 |
+
"audio": {
|
| 13 |
+
"type": "string",
|
| 14 |
+
"description": "Path to the audio file to transcribe.",
|
| 15 |
+
},
|
| 16 |
+
"with_time_markers": {
|
| 17 |
+
"type": "boolean",
|
| 18 |
+
"description": "Whether to include timestamps in the transcription output. Each timestamp appears on its own line in the format [float, float], indicating the number of seconds elapsed from the start of the audio.",
|
| 19 |
+
"nullable": True,
|
| 20 |
+
"default": False,
|
| 21 |
+
},
|
| 22 |
+
}
|
| 23 |
+
output_type = "string"
|
| 24 |
+
|
| 25 |
+
chunk_length_s = 30
|
| 26 |
+
|
| 27 |
+
def __new__(cls, *args, **kwargs):
|
| 28 |
+
device = "cuda:0" if torch.cuda.is_available() else "cpu"
|
| 29 |
+
torch_dtype = torch.float16 if torch.cuda.is_available() else torch.float32
|
| 30 |
+
|
| 31 |
+
model_id = "openai/whisper-large-v3-turbo"
|
| 32 |
+
model = AutoModelForSpeechSeq2Seq.from_pretrained(
|
| 33 |
+
model_id,
|
| 34 |
+
torch_dtype=torch_dtype,
|
| 35 |
+
low_cpu_mem_usage=True,
|
| 36 |
+
use_safetensors=True,
|
| 37 |
+
)
|
| 38 |
+
model.to(device)
|
| 39 |
+
processor = AutoProcessor.from_pretrained(model_id)
|
| 40 |
+
|
| 41 |
+
logging.set_verbosity_error()
|
| 42 |
+
warnings.filterwarnings(
|
| 43 |
+
"ignore",
|
| 44 |
+
category=FutureWarning,
|
| 45 |
+
message=r".*The input name `inputs` is deprecated.*",
|
| 46 |
+
)
|
| 47 |
+
cls.pipe = pipeline(
|
| 48 |
+
"automatic-speech-recognition",
|
| 49 |
+
model=model,
|
| 50 |
+
tokenizer=processor.tokenizer,
|
| 51 |
+
feature_extractor=processor.feature_extractor,
|
| 52 |
+
torch_dtype=torch_dtype,
|
| 53 |
+
device=device,
|
| 54 |
+
chunk_length_s=cls.chunk_length_s,
|
| 55 |
+
return_timestamps=True,
|
| 56 |
+
)
|
| 57 |
+
|
| 58 |
+
return super().__new__(cls, *args, **kwargs)
|
| 59 |
+
|
| 60 |
+
def forward(self, audio: str, with_time_markers: bool = False) -> str:
|
| 61 |
+
"""
|
| 62 |
+
Transcribes speech from audio.
|
| 63 |
+
|
| 64 |
+
Args:
|
| 65 |
+
audio (str): Path to the audio file to transcribe.
|
| 66 |
+
with_time_markers (bool): Whether to include timestamps in the transcription output. Each timestamp appears on its own line in the format [float], indicating the number of seconds elapsed from the start of the audio.
|
| 67 |
+
|
| 68 |
+
Returns:
|
| 69 |
+
str: The transcribed text.
|
| 70 |
+
"""
|
| 71 |
+
result = self.pipe(audio)
|
| 72 |
+
if not with_time_markers:
|
| 73 |
+
return result["text"].strip()
|
| 74 |
+
|
| 75 |
+
txt = ""
|
| 76 |
+
for chunk in self._normalize_chunks(result["chunks"]):
|
| 77 |
+
txt += f"[{chunk['start']:.2f}]\n{chunk['text']}\n[{chunk['end']:.2f}]\n"
|
| 78 |
+
return txt.strip()
|
| 79 |
+
|
| 80 |
+
def transcribe(self, audio, **kwargs):
|
| 81 |
+
result = self.pipe(audio, **kwargs)
|
| 82 |
+
return self._normalize_chunks(result["chunks"])
|
| 83 |
+
|
| 84 |
+
def _normalize_chunks(self, chunks):
|
| 85 |
+
chunk_length_s = self.chunk_length_s
|
| 86 |
+
absolute_offset = 0.0
|
| 87 |
+
chunk_offset = 0.0
|
| 88 |
+
normalized = []
|
| 89 |
+
|
| 90 |
+
for chunk in chunks:
|
| 91 |
+
timestamp_start = chunk["timestamp"][0]
|
| 92 |
+
timestamp_end = chunk["timestamp"][1]
|
| 93 |
+
if timestamp_start < chunk_offset:
|
| 94 |
+
absolute_offset += chunk_length_s
|
| 95 |
+
chunk_offset = timestamp_start
|
| 96 |
+
absolute_start = absolute_offset + timestamp_start
|
| 97 |
+
|
| 98 |
+
if timestamp_end < timestamp_start:
|
| 99 |
+
absolute_offset += chunk_length_s
|
| 100 |
+
absolute_end = absolute_offset + timestamp_end
|
| 101 |
+
chunk_offset = timestamp_end
|
| 102 |
+
|
| 103 |
+
chunk_text = chunk["text"].strip()
|
| 104 |
+
if chunk_text:
|
| 105 |
+
normalized.append(
|
| 106 |
+
{
|
| 107 |
+
"start": absolute_start,
|
| 108 |
+
"end": absolute_end,
|
| 109 |
+
"text": chunk_text,
|
| 110 |
+
}
|
| 111 |
+
)
|
| 112 |
+
|
| 113 |
+
return normalized
|
tools/youtube_video_tool.py
ADDED
|
@@ -0,0 +1,383 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from smolagents import Tool
|
| 2 |
+
from openai import OpenAI
|
| 3 |
+
from .speech_recognition_tool import SpeechRecognitionTool
|
| 4 |
+
from io import BytesIO
|
| 5 |
+
import yt_dlp
|
| 6 |
+
import av
|
| 7 |
+
import torchaudio
|
| 8 |
+
import subprocess
|
| 9 |
+
import requests
|
| 10 |
+
import base64
|
| 11 |
+
|
| 12 |
+
|
| 13 |
+
class YoutubeVideoTool(Tool):
|
| 14 |
+
name = "youtube_video"
|
| 15 |
+
description = """Process the video and return the requested information from it."""
|
| 16 |
+
inputs = {
|
| 17 |
+
"url": {
|
| 18 |
+
"type": "string",
|
| 19 |
+
"description": "The URL of the YouTube video.",
|
| 20 |
+
},
|
| 21 |
+
"query": {
|
| 22 |
+
"type": "string",
|
| 23 |
+
"description": "The question to answer.",
|
| 24 |
+
},
|
| 25 |
+
}
|
| 26 |
+
output_type = "string"
|
| 27 |
+
|
| 28 |
+
def __init__(
|
| 29 |
+
self,
|
| 30 |
+
video_quality: int = 360,
|
| 31 |
+
frames_interval: int | float | None = 2,
|
| 32 |
+
chunk_duration: int | float | None = 20,
|
| 33 |
+
speech_recognition_tool: SpeechRecognitionTool | None = None,
|
| 34 |
+
client: OpenAI | None = None,
|
| 35 |
+
model_id: str = "gpt-4.1-mini",
|
| 36 |
+
debug: bool = False,
|
| 37 |
+
**kwargs,
|
| 38 |
+
):
|
| 39 |
+
self.video_quality = video_quality
|
| 40 |
+
self.speech_recognition_tool = speech_recognition_tool
|
| 41 |
+
self.frames_interval = frames_interval
|
| 42 |
+
self.chunk_duration = chunk_duration
|
| 43 |
+
|
| 44 |
+
self.client = client or OpenAI()
|
| 45 |
+
self.model_id = model_id
|
| 46 |
+
|
| 47 |
+
self.debug = debug
|
| 48 |
+
|
| 49 |
+
super().__init__(**kwargs)
|
| 50 |
+
|
| 51 |
+
def forward(self, url: str, query: str):
|
| 52 |
+
"""
|
| 53 |
+
Process the video and return the requested information.
|
| 54 |
+
Args:
|
| 55 |
+
url (str): The URL of the YouTube video.
|
| 56 |
+
query (str): The question to answer.
|
| 57 |
+
Returns:
|
| 58 |
+
str: Answer to the query.
|
| 59 |
+
"""
|
| 60 |
+
answer = ""
|
| 61 |
+
for chunk in self._split_video_into_chunks(url):
|
| 62 |
+
prompt = self._prompt(
|
| 63 |
+
chunk,
|
| 64 |
+
query,
|
| 65 |
+
answer,
|
| 66 |
+
)
|
| 67 |
+
response = self.client.responses.create(
|
| 68 |
+
model="gpt-4.1-mini",
|
| 69 |
+
input=[
|
| 70 |
+
{
|
| 71 |
+
"role": "user",
|
| 72 |
+
"content": [
|
| 73 |
+
{
|
| 74 |
+
"type": "input_text",
|
| 75 |
+
"text": prompt,
|
| 76 |
+
},
|
| 77 |
+
*[
|
| 78 |
+
{
|
| 79 |
+
"type": "input_image",
|
| 80 |
+
"image_url": f"data:image/jpeg;base64,{frame}",
|
| 81 |
+
}
|
| 82 |
+
for frame in self._base64_frames(chunk["frames"])
|
| 83 |
+
],
|
| 84 |
+
],
|
| 85 |
+
}
|
| 86 |
+
],
|
| 87 |
+
)
|
| 88 |
+
answer = response.output_text
|
| 89 |
+
if self.debug:
|
| 90 |
+
print(
|
| 91 |
+
f"CHUNK {chunk['start']} - {chunk['end']}:\n\n{prompt}\n\nANSWER:\n{answer}"
|
| 92 |
+
)
|
| 93 |
+
|
| 94 |
+
if answer.strip() == "I need to keep watching":
|
| 95 |
+
answer = ""
|
| 96 |
+
return answer
|
| 97 |
+
|
| 98 |
+
def _prompt(self, chunk, query, aggregated_answer):
|
| 99 |
+
prompt = [
|
| 100 |
+
f"""\
|
| 101 |
+
These are some frames of a video that I want to upload.
|
| 102 |
+
I will ask a question about the entire video, but I will only last part of it.
|
| 103 |
+
Aggregate answer about the entire video, use information about previous parts but do not reference the previous parts in the answer directly.
|
| 104 |
+
|
| 105 |
+
Ground your answer based on video title, description, captions, vide frames or answer from previous parts.
|
| 106 |
+
If no evidences presented just say "I need to keep watching".
|
| 107 |
+
|
| 108 |
+
VIDEO TITLE:
|
| 109 |
+
{chunk["title"]}
|
| 110 |
+
|
| 111 |
+
VIDEO DESCRIPTION:
|
| 112 |
+
{chunk["description"]}
|
| 113 |
+
|
| 114 |
+
FRAMES SUBTITLES:
|
| 115 |
+
{chunk["captions"]}"""
|
| 116 |
+
]
|
| 117 |
+
|
| 118 |
+
if aggregated_answer:
|
| 119 |
+
prompt.append(f"""\
|
| 120 |
+
Here is the answer to the same question based on the previous video parts:
|
| 121 |
+
|
| 122 |
+
BASED ON PREVIOUS PARTS:
|
| 123 |
+
{aggregated_answer}""")
|
| 124 |
+
|
| 125 |
+
prompt.append(f"""\
|
| 126 |
+
|
| 127 |
+
QUESTION:
|
| 128 |
+
{query}""")
|
| 129 |
+
|
| 130 |
+
return "\n\n".join(prompt)
|
| 131 |
+
|
| 132 |
+
def _split_video_into_chunks(
|
| 133 |
+
self, url: str, with_captions: bool = True, with_frames: bool = True
|
| 134 |
+
):
|
| 135 |
+
video = self._process_video(
|
| 136 |
+
url, with_captions=with_captions, with_frames=with_frames
|
| 137 |
+
)
|
| 138 |
+
video_duration = video["duration"]
|
| 139 |
+
chunk_duration = self.chunk_duration or video_duration
|
| 140 |
+
|
| 141 |
+
chunk_start = 0.0
|
| 142 |
+
while chunk_start < video_duration:
|
| 143 |
+
chunk_end = min(chunk_start + chunk_duration, video_duration)
|
| 144 |
+
chunk = self._get_video_chunk(video, chunk_start, chunk_end)
|
| 145 |
+
yield chunk
|
| 146 |
+
chunk_start += chunk_duration
|
| 147 |
+
|
| 148 |
+
def _get_video_chunk(self, video, start, end):
|
| 149 |
+
chunk_captions = [
|
| 150 |
+
c for c in video["captions"] if c["start"] <= end and c["end"] >= start
|
| 151 |
+
]
|
| 152 |
+
chunk_frames = [
|
| 153 |
+
f
|
| 154 |
+
for f in video["frames"]
|
| 155 |
+
if f["timestamp"] >= start and f["timestamp"] <= end
|
| 156 |
+
]
|
| 157 |
+
|
| 158 |
+
return {
|
| 159 |
+
"title": video["title"],
|
| 160 |
+
"description": video["description"],
|
| 161 |
+
"start": start,
|
| 162 |
+
"end": end,
|
| 163 |
+
"captions": "\n".join([c["text"] for c in chunk_captions]),
|
| 164 |
+
"frames": chunk_frames,
|
| 165 |
+
}
|
| 166 |
+
|
| 167 |
+
def _process_video(
|
| 168 |
+
self, url: str, with_captions: bool = True, with_frames: bool = True
|
| 169 |
+
):
|
| 170 |
+
lang = "en"
|
| 171 |
+
info = self._get_video_info(url, lang)
|
| 172 |
+
|
| 173 |
+
if with_captions:
|
| 174 |
+
captions = self._extract_captions(
|
| 175 |
+
lang, info.get("subtitles", {}), info.get("automatic_captions", {})
|
| 176 |
+
)
|
| 177 |
+
if not captions and self.speech_recognition_tool:
|
| 178 |
+
audio_url = self._select_audio_format(info["formats"])
|
| 179 |
+
audio = self._capture_audio(audio_url)
|
| 180 |
+
waveform, sample_rate = torchaudio.load(audio)
|
| 181 |
+
assert sample_rate == 16000
|
| 182 |
+
waveform_np = waveform.squeeze().numpy()
|
| 183 |
+
captions = self.speech_recognition_tool.transcribe(waveform_np)
|
| 184 |
+
else:
|
| 185 |
+
captions = []
|
| 186 |
+
|
| 187 |
+
if with_frames:
|
| 188 |
+
video_url = self._select_video_format(info["formats"], 360)["url"]
|
| 189 |
+
frames = self._capture_video_frames(video_url, self.frames_interval)
|
| 190 |
+
else:
|
| 191 |
+
frames = []
|
| 192 |
+
|
| 193 |
+
return {
|
| 194 |
+
"id": info["id"],
|
| 195 |
+
"title": info["title"],
|
| 196 |
+
"description": info["description"],
|
| 197 |
+
"duration": info["duration"],
|
| 198 |
+
"captions": captions,
|
| 199 |
+
"frames": frames,
|
| 200 |
+
}
|
| 201 |
+
|
| 202 |
+
def _get_video_info(self, url: str, lang: str):
|
| 203 |
+
ydl_opts = {
|
| 204 |
+
"quiet": True,
|
| 205 |
+
"skip_download": True,
|
| 206 |
+
"format": "bestvideo[ext=mp4][height<=360]+bestaudio[ext=m4a]/best[height<=360]",
|
| 207 |
+
"forceurl": True,
|
| 208 |
+
"noplaylist": True,
|
| 209 |
+
"writesubtitles": True,
|
| 210 |
+
"writeautomaticsub": True,
|
| 211 |
+
"subtitlesformat": "vtt",
|
| 212 |
+
"subtitleslangs": [lang],
|
| 213 |
+
}
|
| 214 |
+
|
| 215 |
+
with yt_dlp.YoutubeDL(ydl_opts) as ydl:
|
| 216 |
+
info = ydl.extract_info(url, download=False)
|
| 217 |
+
|
| 218 |
+
return info
|
| 219 |
+
|
| 220 |
+
def _extract_captions(self, lang, subtitles, auto_captions):
|
| 221 |
+
caption_tracks = subtitles.get(lang) or auto_captions.get(lang) or []
|
| 222 |
+
|
| 223 |
+
structured_captions = []
|
| 224 |
+
|
| 225 |
+
srt_track = next(
|
| 226 |
+
(track for track in caption_tracks if track["ext"] == "srt"), None
|
| 227 |
+
)
|
| 228 |
+
vtt_track = next(
|
| 229 |
+
(track for track in caption_tracks if track["ext"] == "vtt"), None
|
| 230 |
+
)
|
| 231 |
+
|
| 232 |
+
if srt_track:
|
| 233 |
+
import pysrt
|
| 234 |
+
|
| 235 |
+
response = requests.get(srt_track["url"])
|
| 236 |
+
response.raise_for_status()
|
| 237 |
+
srt_data = response.content.decode("utf-8")
|
| 238 |
+
|
| 239 |
+
def to_sec(t):
|
| 240 |
+
return (
|
| 241 |
+
t.hours * 3600 + t.minutes * 60 + t.seconds + t.milliseconds / 1000
|
| 242 |
+
)
|
| 243 |
+
|
| 244 |
+
structured_captions = [
|
| 245 |
+
{
|
| 246 |
+
"start": to_sec(sub.start),
|
| 247 |
+
"end": to_sec(sub.end),
|
| 248 |
+
"text": sub.text.strip(),
|
| 249 |
+
}
|
| 250 |
+
for sub in pysrt.from_str(srt_data)
|
| 251 |
+
]
|
| 252 |
+
if vtt_track:
|
| 253 |
+
import webvtt
|
| 254 |
+
from io import StringIO
|
| 255 |
+
|
| 256 |
+
response = requests.get(vtt_track["url"])
|
| 257 |
+
response.raise_for_status()
|
| 258 |
+
vtt_data = response.text
|
| 259 |
+
|
| 260 |
+
vtt_file = StringIO(vtt_data)
|
| 261 |
+
|
| 262 |
+
def to_sec(t):
|
| 263 |
+
"""Convert 'HH:MM:SS.mmm' to float seconds"""
|
| 264 |
+
h, m, s = t.split(":")
|
| 265 |
+
s, ms = s.split(".")
|
| 266 |
+
return int(h) * 3600 + int(m) * 60 + int(s) + int(ms) / 1000
|
| 267 |
+
|
| 268 |
+
for caption in webvtt.read_buffer(vtt_file):
|
| 269 |
+
structured_captions.append(
|
| 270 |
+
{
|
| 271 |
+
"start": to_sec(caption.start),
|
| 272 |
+
"end": to_sec(caption.end),
|
| 273 |
+
"text": caption.text.strip(),
|
| 274 |
+
}
|
| 275 |
+
)
|
| 276 |
+
return structured_captions
|
| 277 |
+
|
| 278 |
+
def _select_video_format(self, formats, video_quality):
|
| 279 |
+
video_format = next(
|
| 280 |
+
f
|
| 281 |
+
for f in formats
|
| 282 |
+
if f.get("vcodec") != "none" and f.get("height") == video_quality
|
| 283 |
+
)
|
| 284 |
+
return video_format
|
| 285 |
+
|
| 286 |
+
def _capture_video_frames(self, video_url, capture_interval_sec=None):
|
| 287 |
+
ffmpeg_cmd = [
|
| 288 |
+
"ffmpeg",
|
| 289 |
+
"-i",
|
| 290 |
+
video_url,
|
| 291 |
+
"-f",
|
| 292 |
+
"matroska", # container format
|
| 293 |
+
"-",
|
| 294 |
+
]
|
| 295 |
+
|
| 296 |
+
process = subprocess.Popen(
|
| 297 |
+
ffmpeg_cmd, stdout=subprocess.PIPE, stderr=subprocess.DEVNULL
|
| 298 |
+
)
|
| 299 |
+
|
| 300 |
+
container = av.open(process.stdout)
|
| 301 |
+
stream = container.streams.video[0]
|
| 302 |
+
time_base = stream.time_base
|
| 303 |
+
|
| 304 |
+
frames = []
|
| 305 |
+
next_capture_time = 0
|
| 306 |
+
for frame in container.decode(stream):
|
| 307 |
+
if frame.pts is None:
|
| 308 |
+
continue
|
| 309 |
+
|
| 310 |
+
timestamp = float(frame.pts * time_base)
|
| 311 |
+
if capture_interval_sec is None or timestamp >= next_capture_time:
|
| 312 |
+
frames.append(
|
| 313 |
+
{
|
| 314 |
+
"timestamp": timestamp,
|
| 315 |
+
"image": frame.to_image(), # PIL image
|
| 316 |
+
}
|
| 317 |
+
)
|
| 318 |
+
if capture_interval_sec is not None:
|
| 319 |
+
next_capture_time += capture_interval_sec
|
| 320 |
+
|
| 321 |
+
process.terminate()
|
| 322 |
+
return frames
|
| 323 |
+
|
| 324 |
+
def _base64_frames(self, frames):
|
| 325 |
+
base64_frames = []
|
| 326 |
+
for f in frames:
|
| 327 |
+
buffered = BytesIO()
|
| 328 |
+
f["image"].save(buffered, format="JPEG")
|
| 329 |
+
encoded = base64.b64encode(buffered.getvalue()).decode("utf-8")
|
| 330 |
+
base64_frames.append(encoded)
|
| 331 |
+
return base64_frames
|
| 332 |
+
|
| 333 |
+
def _select_audio_format(self, formats):
|
| 334 |
+
audio_formats = [
|
| 335 |
+
f
|
| 336 |
+
for f in formats
|
| 337 |
+
if f.get("vcodec") == "none"
|
| 338 |
+
and f.get("acodec")
|
| 339 |
+
and f.get("acodec") != "none"
|
| 340 |
+
]
|
| 341 |
+
|
| 342 |
+
if not audio_formats:
|
| 343 |
+
raise ValueError("No valid audio-only formats found.")
|
| 344 |
+
|
| 345 |
+
# Prefer m4a > webm, highest abr first
|
| 346 |
+
preferred_exts = ["m4a", "webm"]
|
| 347 |
+
|
| 348 |
+
def sort_key(f):
|
| 349 |
+
ext_score = (
|
| 350 |
+
preferred_exts.index(f["ext"]) if f["ext"] in preferred_exts else 99
|
| 351 |
+
)
|
| 352 |
+
abr = f.get("abr") or 0
|
| 353 |
+
return (ext_score, -abr)
|
| 354 |
+
|
| 355 |
+
audio_formats.sort(key=sort_key)
|
| 356 |
+
return audio_formats[0]["url"]
|
| 357 |
+
|
| 358 |
+
def _capture_audio(self, audio_url) -> BytesIO:
|
| 359 |
+
audio_buffer = BytesIO()
|
| 360 |
+
ffmpeg_audio_cmd = [
|
| 361 |
+
"ffmpeg",
|
| 362 |
+
"-i",
|
| 363 |
+
audio_url,
|
| 364 |
+
"-f",
|
| 365 |
+
"wav",
|
| 366 |
+
"-acodec",
|
| 367 |
+
"pcm_s16le", # Whisper prefers PCM
|
| 368 |
+
"-ac",
|
| 369 |
+
"1", # Mono
|
| 370 |
+
"-ar",
|
| 371 |
+
"16000", # 16kHz for Whisper
|
| 372 |
+
"-",
|
| 373 |
+
]
|
| 374 |
+
|
| 375 |
+
result = subprocess.run(
|
| 376 |
+
ffmpeg_audio_cmd, stdout=subprocess.PIPE, stderr=subprocess.PIPE
|
| 377 |
+
)
|
| 378 |
+
if result.returncode != 0:
|
| 379 |
+
raise RuntimeError("ffmpeg failed:\n" + result.stderr.decode())
|
| 380 |
+
|
| 381 |
+
audio_buffer = BytesIO(result.stdout)
|
| 382 |
+
audio_buffer.seek(0)
|
| 383 |
+
return audio_buffer
|