slaq-version-c-ai-enginee / TRANSCRIPT_DEBUG.md
anfastech's picture
Updation: Simplifying the AI engine to use only ai4bharat/indicwav2vec-hindi for ASR.
e7e9fa8

Transcript Debugging Guide

Issue: Empty Transcripts ("No transcript available")

Complete Flow Analysis

1. Django App → API Request (slaq-version-c/diagnosis/ai_engine/detect_stuttering.py)

Location: Line 269-274

response = requests.post(
    self.api_url,
    files=files,
    data={
        "transcript": proper_transcript if proper_transcript else "",
        "language": lang_code,
    },
    timeout=self.api_timeout
)

Status: ✅ Sending transcript parameter correctly


2. API Receives Request (slaq-version-c-ai-enginee/app.py)

Location: Line 70-73

@app.post("/analyze")
async def analyze_audio(
    audio: UploadFile = File(...),
    transcript: str = Form("")  # ✅ Fixed: Now uses Form() for multipart
):

Status: ✅ Fixed - Now correctly receives transcript via Form()


3. API Calls Model (slaq-version-c-ai-enginee/app.py)

Location: Line 106

result = detector.analyze_audio(temp_file, transcript)

Status: ✅ Passing transcript correctly


4. Model Transcribes Audio (slaq-version-c-ai-enginee/diagnosis/ai_engine/detect_stuttering.py)

Location: Line 313-369 (_transcribe_with_timestamps)

Potential Issues:

  • ❓ IndicWav2Vec decoding might not work with processor.batch_decode()
  • ❓ Need to use tokenizer directly
  • ❓ Model might not be producing valid predictions

Status: ⚠️ LIKELY ISSUE HERE - Decoding method may be incorrect


5. Model Returns Result (slaq-version-c-ai-enginee/diagnosis/ai_engine/detect_stuttering.py)

Location: Line 787-794

actual_transcript = transcript if transcript else ""
target_transcript = proper_transcript if proper_transcript else transcript if transcript else ""

return {
    'actual_transcript': actual_transcript,
    'target_transcript': target_transcript,
    ...
}

Status: ✅ Returns transcripts correctly (if transcript is not empty)


6. API Returns Response (slaq-version-c-ai-enginee/app.py)

Location: Line 109-113

actual = result.get('actual_transcript', '')
target = result.get('target_transcript', '')
logger.info(f"📝 Result transcripts - Actual: '{actual[:100]}' (len: {len(actual)}), Target: '{target[:100]}' (len: {len(target)})")
return result

Status: ✅ Returns JSON with transcripts


7. Django Receives Response (slaq-version-c/diagnosis/ai_engine/detect_stuttering.py)

Location: Line 279-410

result = response.json()
# ... formatting ...
actual_transcript = str(api_result.get('actual_transcript', '')).strip()
target_transcript = str(api_result.get('target_transcript', '')).strip()

Status: ✅ Extracts transcripts correctly


8. Django Saves to Database (slaq-version-c/diagnosis/tasks.py)

Location: Line 141-142

actual_transcript=actual_transcript,
target_transcript=target_transcript,

Status: ✅ Saves correctly


Root Cause Analysis

Most Likely Issue: Transcription Decoding

The IndicWav2Vec model (ai4bharat/indicwav2vec-hindi) may require:

  1. Direct tokenizer access instead of processor.batch_decode()
  2. CTC decoding with proper tokenizer
  3. Special handling for Indic scripts

Fix Applied

Updated _transcribe_with_timestamps() to:

  1. Try multiple decoding methods
  2. Use tokenizer directly if available
  3. Add comprehensive error logging
  4. Log predicted IDs for debugging

Debugging Steps

1. Check API Logs

When processing audio, look for:

📝 Transcribed text: '...' (length: X)
📝 Final return - Actual: '...' (len: X), Target: '...' (len: Y)
📝 Result transcripts - Actual: '...' (len: X), Target: '...' (len: Y)

2. Check Django Logs

Look for:

📝 Final transcripts - Actual: X chars, Target: Y chars
📝 Saving transcripts - Actual: X chars, Target: Y chars

3. Check Database

Query the AnalysisResult table:

SELECT actual_transcript, target_transcript, LENGTH(actual_transcript) as actual_len, LENGTH(target_transcript) as target_len 
FROM diagnosis_analysisresult 
ORDER BY created_at DESC LIMIT 5;

4. Test API Directly

curl -X POST "http://localhost:7860/analyze" \
  -F "[email protected]" \
  -F "transcript=test transcript" \
  -F "language=hin"

Check the response JSON for actual_transcript and target_transcript.


Next Steps

  1. Rebuild Docker image with latest changes
  2. Check logs during audio processing
  3. Verify processor structure - logs will show processor attributes
  4. Test with Hindi audio - model is optimized for Hindi
  5. Check if model is loaded correctly - verify HF_TOKEN is working

Expected Log Output (Success)

🚀 Initializing Advanced AI Engine on cpu...
✅ HF_TOKEN found - using authenticated model access
📋 Processor type: <class 'transformers.models.wav2vec2.processing_wav2vec2.Wav2Vec2Processor'>
📋 Processor attributes: ['batch_decode', 'decode', 'feature_extractor', 'tokenizer', ...]
📋 Tokenizer type: <class 'transformers.models.wav2vec2.tokenization_wav2vec2.Wav2Vec2CTCTokenizer'>
📝 Transcribed text: 'नमस्ते मैं हिंदी बोल रहा हूं' (length: 25)
📝 Final return - Actual: 'नमस्ते मैं हिंदी बोल रहा हूं' (len: 25), Target: '...' (len: X)

If Still Empty

  1. Model may not be loaded correctly - check HF_TOKEN
  2. Audio format issue - ensure 16kHz mono WAV
  3. Model not producing predictions - check predicted_ids in logs
  4. Tokenizer mismatch - IndicWav2Vec may need special tokenizer initialization