Spaces:
Running
Running
File size: 65,661 Bytes
58a2a88 880e0c3 2d5711a b9095b0 58a2a88 3de965c 950cc9f 58a2a88 880e0c3 58a2a88 b9095b0 4d01f30 b9095b0 58a2a88 880e0c3 58a2a88 4ff69d8 58a2a88 b88b399 4acbd3f b88b399 58a2a88 4ff69d8 2e41039 da41f2b e9f6960 2d5711a e9f6960 2d5711a e9f6960 8c4d3b2 4ff69d8 8c4d3b2 880e0c3 4ff69d8 880e0c3 8c4d3b2 880e0c3 4ff69d8 880e0c3 8c4d3b2 880e0c3 e9e00b7 2e41039 880e0c3 4ff69d8 e9f6960 8c4d3b2 2d5711a 8c4d3b2 2d5711a 8c4d3b2 2d5711a 8c4d3b2 f0a088d 35de6cd 2d5711a 8c4d3b2 e9f6960 35de6cd 880e0c3 8c4d3b2 e9f6960 8c4d3b2 880e0c3 752a878 880e0c3 752a878 880e0c3 752a878 880e0c3 752a878 880e0c3 752a878 880e0c3 4ff69d8 880e0c3 61c8bf9 1fa413d 880e0c3 1fa413d 58a2a88 1fa413d 3541663 880e0c3 61c8bf9 96274f8 4ff69d8 96274f8 61c8bf9 58a2a88 1fa413d 880e0c3 61c8bf9 e9e00b7 61c8bf9 880e0c3 96274f8 58a2a88 4ff69d8 1fa413d e9e00b7 e9f6960 4ff69d8 96274f8 4ff69d8 96274f8 4ff69d8 e9e00b7 4ff69d8 96274f8 4ff69d8 35de6cd 4ff69d8 96274f8 4ff69d8 96274f8 4ff69d8 2d5711a 4ff69d8 58a2a88 4ff69d8 1fa413d 58a2a88 1fa413d 58a2a88 1fa413d 58a2a88 1fa413d 58a2a88 4ff69d8 96274f8 4ff69d8 1fa413d 96274f8 1fa413d 96274f8 1fa413d 96274f8 58a2a88 4ff69d8 96274f8 4ff69d8 58a2a88 96274f8 58a2a88 e9e00b7 58a2a88 e9e00b7 58a2a88 4ff69d8 96274f8 4ff69d8 58a2a88 1fa413d 58a2a88 880e0c3 58a2a88 61c8bf9 3541663 58a2a88 4ff69d8 58a2a88 880e0c3 58a2a88 1fa413d 880e0c3 1fa413d 880e0c3 4ff69d8 58a2a88 880e0c3 58a2a88 880e0c3 58a2a88 1fa413d 880e0c3 61c8bf9 880e0c3 61c8bf9 880e0c3 61c8bf9 880e0c3 61c8bf9 58a2a88 61c8bf9 880e0c3 61c8bf9 58a2a88 880e0c3 1fa413d 58a2a88 61c8bf9 58a2a88 4ff69d8 58a2a88 4ff69d8 58a2a88 4ff69d8 58a2a88 dc4a82b 58a2a88 dc4a82b 58a2a88 4ff69d8 58a2a88 dc4a82b 58a2a88 dc4a82b 58a2a88 dc4a82b 58a2a88 dc4a82b 58a2a88 dc4a82b 58a2a88 dc4a82b 58a2a88 dc4a82b 58a2a88 dc4a82b 58a2a88 0eff5e2 4ff69d8 0eff5e2 4ff69d8 0eff5e2 dc4a82b 58a2a88 dc4a82b 58a2a88 dc4a82b 58a2a88 4ff69d8 58a2a88 b9095b0 dc4a82b 61c8bf9 58a2a88 4ff69d8 58a2a88 4ff69d8 58a2a88 4ff69d8 58a2a88 0f4dfc1 58a2a88 0f4dfc1 58a2a88 0f4dfc1 58a2a88 0f4dfc1 4ff69d8 58a2a88 4ff69d8 58a2a88 b9095b0 58a2a88 4ff69d8 58a2a88 0f4dfc1 58a2a88 0f4dfc1 58a2a88 b9095b0 58a2a88 880e0c3 58a2a88 4ff69d8 58a2a88 b9095b0 58a2a88 4ff69d8 58a2a88 4ff69d8 58a2a88 4ff69d8 58a2a88 4ff69d8 58a2a88 4ff69d8 58a2a88 4ff69d8 58a2a88 b9095b0 7ce2214 b9095b0 bdbfd9e b9095b0 bdbfd9e b9095b0 bdbfd9e b9095b0 bdbfd9e b9095b0 bdbfd9e b9095b0 bdbfd9e b9095b0 bdbfd9e b9095b0 bdbfd9e b9095b0 bdbfd9e b9095b0 bdbfd9e b9095b0 bdbfd9e b9095b0 bdbfd9e b9095b0 bdbfd9e b9095b0 0f4dfc1 4ff69d8 0f4dfc1 4ff69d8 0f4dfc1 b9095b0 58a2a88 880e0c3 58a2a88 4ff69d8 58a2a88 4ff69d8 58a2a88 4ff69d8 58a2a88 4ff69d8 58a2a88 4ff69d8 58a2a88 4ff69d8 58a2a88 4ff69d8 58a2a88 4ff69d8 58a2a88 880e0c3 58a2a88 4ff69d8 58a2a88 4ff69d8 58a2a88 4ff69d8 58a2a88 4ff69d8 58a2a88 4ff69d8 58a2a88 4ff69d8 58a2a88 4ff69d8 58a2a88 4ff69d8 58a2a88 4ff69d8 58a2a88 4ff69d8 0f4dfc1 b9095b0 4ff69d8 0f4dfc1 4ff69d8 58a2a88 4ff69d8 880e0c3 58a2a88 4ff69d8 58a2a88 880e0c3 58a2a88 4ff69d8 58a2a88 880e0c3 58a2a88 b9095b0 58a2a88 4ff69d8 58a2a88 4ff69d8 0f4dfc1 4ff69d8 0f4dfc1 58a2a88 4ff69d8 880e0c3 4ff69d8 e9f6960 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 |
import json
import argparse
import os
import re
import torch
import torch.nn as nn
from TorchCRF import CRF
from transformers import LayoutLMv3TokenizerFast, LayoutLMv3Model, LayoutLMv3Config
from typing import List, Dict, Any, Optional, Union, Tuple
import fitz # PyMuPDF
import numpy as np
import cv2
from ultralytics import YOLO
import glob
import pytesseract
from PIL import Image
from scipy.signal import find_peaks
from scipy.ndimage import gaussian_filter1d
import sys
import io
import base64
import tempfile
import time
import shutil
from sklearn.feature_extraction.text import CountVectorizer
from sklearn.metrics.pairwise import cosine_similarity
# ============================================================================
# --- CONFIGURATION AND CONSTANTS ---
# ============================================================================
# NOTE: Update these paths to match your environment before running!
WEIGHTS_PATH = 'YOLO_MATH/yolo_split_data/runs/detect/math_figure_detector_v3/weights/best.pt'
DEFAULT_LAYOUTLMV3_MODEL_PATH = "97.pth"
# DIRECTORY CONFIGURATION
OCR_JSON_OUTPUT_DIR = './ocr_json_output_final'
FIGURE_EXTRACTION_DIR = './figure_extraction'
TEMP_IMAGE_DIR = './temp_pdf_images'
# Detection parameters
CONF_THRESHOLD = 0.2
TARGET_CLASSES = ['figure', 'equation']
IOU_MERGE_THRESHOLD = 0.4
IOA_SUPPRESSION_THRESHOLD = 0.7
LINE_TOLERANCE = 15
#Similarity
SIMILARITY_THRESHOLD = 0.10
RESOLUTION_MARGIN = 0.05
# Global counters for sequential numbering across the entire PDF
GLOBAL_FIGURE_COUNT = 0
GLOBAL_EQUATION_COUNT = 0
# LayoutLMv3 Labels
ID_TO_LABEL = {
0: "O",
1: "B-QUESTION", 2: "I-QUESTION",
3: "B-OPTION", 4: "I-OPTION",
5: "B-ANSWER", 6: "I-ANSWER",
7: "B-SECTION_HEADING", 8: "I-SECTION_HEADING",
9: "B-PASSAGE", 10: "I-PASSAGE"
}
NUM_LABELS = len(ID_TO_LABEL)
# ============================================================================
# --- PERFORMANCE OPTIMIZATION: OCR CACHE ---
# ============================================================================
class OCRCache:
"""Caches OCR results per page to avoid redundant Tesseract runs."""
def __init__(self):
self.cache = {}
def get_key(self, pdf_path: str, page_num: int) -> str:
return f"{pdf_path}:{page_num}"
def has_ocr(self, pdf_path: str, page_num: int) -> bool:
return self.get_key(pdf_path, page_num) in self.cache
def get_ocr(self, pdf_path: str, page_num: int) -> Optional[list]:
return self.cache.get(self.get_key(pdf_path, page_num))
def set_ocr(self, pdf_path: str, page_num: int, ocr_data: list):
self.cache[self.get_key(pdf_path, page_num)] = ocr_data
def clear(self):
self.cache.clear()
# Global OCR cache instance
_ocr_cache = OCRCache()
# ============================================================================
# --- PHASE 1: YOLO/OCR PREPROCESSING FUNCTIONS ---
# ============================================================================
def calculate_iou(box1, box2):
x1_a, y1_a, x2_a, y2_a = box1
x1_b, y1_b, x2_b, y2_b = box2
x_left = max(x1_a, x1_b)
y_top = max(y1_a, y1_b)
x_right = min(x2_a, x2_b)
y_bottom = min(y2_a, y2_b)
intersection_area = max(0, x_right - x_left) * max(0, y_bottom - y_top)
box_a_area = (x2_a - x1_a) * (y2_a - y1_a)
box_b_area = (x2_b - x1_b) * (y2_b - y1_b)
union_area = float(box_a_area + box_b_area - intersection_area)
return intersection_area / union_area if union_area > 0 else 0
def calculate_ioa(box1, box2):
x1_a, y1_a, x2_a, y2_a = box1
x1_b, y1_b, x2_b, y2_b = box2
x_left = max(x1_a, x1_b)
y_top = max(y1_a, y1_b)
x_right = min(x2_a, x2_b)
y_bottom = min(y2_a, y2_b)
intersection_area = max(0, x_right - x_left) * max(0, y_bottom - y_top)
box_a_area = (x2_a - x1_a) * (y2_a - y1_a)
return intersection_area / box_a_area if box_a_area > 0 else 0
def filter_nested_boxes(detections, ioa_threshold=0.80):
"""
Removes boxes that are inside larger boxes (Containment Check).
Prioritizes keeping the LARGEST box (the 'parent' container).
"""
if not detections:
return []
# 1. Calculate Area for all detections
for d in detections:
x1, y1, x2, y2 = d['coords']
d['area'] = (x2 - x1) * (y2 - y1)
# 2. Sort by Area Descending (Largest to Smallest)
# This ensures we process the 'container' first
detections.sort(key=lambda x: x['area'], reverse=True)
keep_indices = []
is_suppressed = [False] * len(detections)
for i in range(len(detections)):
if is_suppressed[i]: continue
keep_indices.append(i)
box_a = detections[i]['coords']
# Compare with all smaller boxes
for j in range(i + 1, len(detections)):
if is_suppressed[j]: continue
box_b = detections[j]['coords']
# Calculate Intersection
x_left = max(box_a[0], box_b[0])
y_top = max(box_a[1], box_b[1])
x_right = min(box_a[2], box_b[2])
y_bottom = min(box_a[3], box_b[3])
if x_right < x_left or y_bottom < y_top:
intersection = 0
else:
intersection = (x_right - x_left) * (y_bottom - y_top)
# Calculate IoA (Intersection over Area of the SMALLER box)
# Since we sorted by area, 'box_b' (detections[j]) is the smaller one.
area_b = detections[j]['area']
if area_b > 0:
ioa_small = intersection / area_b
# If the small box is > 90% inside the big box, suppress the small one.
if ioa_small > ioa_threshold:
is_suppressed[j] = True
#print(f" [Suppress] Removed nested object inside larger '{detections[i]['class']}'")
return [detections[i] for i in keep_indices]
def merge_overlapping_boxes(detections, iou_threshold):
if not detections: return []
detections.sort(key=lambda d: d['conf'], reverse=True)
merged_detections = []
is_merged = [False] * len(detections)
for i in range(len(detections)):
if is_merged[i]: continue
current_box = detections[i]['coords']
current_class = detections[i]['class']
merged_x1, merged_y1, merged_x2, merged_y2 = current_box
for j in range(i + 1, len(detections)):
if is_merged[j] or detections[j]['class'] != current_class: continue
other_box = detections[j]['coords']
iou = calculate_iou(current_box, other_box)
if iou > iou_threshold:
merged_x1 = min(merged_x1, other_box[0])
merged_y1 = min(merged_y1, other_box[1])
merged_x2 = max(merged_x2, other_box[2])
merged_y2 = max(merged_y2, other_box[3])
is_merged[j] = True
merged_detections.append({
'coords': (merged_x1, merged_y1, merged_x2, merged_y2),
'y1': merged_y1, 'class': current_class, 'conf': detections[i]['conf']
})
return merged_detections
def merge_yolo_into_word_data(raw_word_data: list, yolo_detections: list, scale_factor: float) -> list:
"""
Filters out raw words that are inside YOLO boxes and replaces them with
a single solid 'placeholder' block for the column detector.
"""
if not yolo_detections:
return raw_word_data
# 1. Convert YOLO boxes (Pixels) to PDF Coordinates (Points)
pdf_space_boxes = []
for det in yolo_detections:
x1, y1, x2, y2 = det['coords']
pdf_box = (
x1 / scale_factor,
y1 / scale_factor,
x2 / scale_factor,
y2 / scale_factor
)
pdf_space_boxes.append(pdf_box)
# 2. Filter out raw words that are inside YOLO boxes
cleaned_word_data = []
for word_tuple in raw_word_data:
wx1, wy1, wx2, wy2 = word_tuple[1], word_tuple[2], word_tuple[3], word_tuple[4]
w_center_x = (wx1 + wx2) / 2
w_center_y = (wy1 + wy2) / 2
is_inside_yolo = False
for px1, py1, px2, py2 in pdf_space_boxes:
if px1 <= w_center_x <= px2 and py1 <= w_center_y <= py2:
is_inside_yolo = True
break
if not is_inside_yolo:
cleaned_word_data.append(word_tuple)
# 3. Add the YOLO boxes themselves as "Solid Words"
for i, (px1, py1, px2, py2) in enumerate(pdf_space_boxes):
dummy_entry = (f"BLOCK_{i}", px1, py1, px2, py2)
cleaned_word_data.append(dummy_entry)
return cleaned_word_data
# ============================================================================
# --- MISSING HELPER FUNCTION ---
# ============================================================================
def preprocess_image_for_ocr(img_np):
"""
Converts image to grayscale and applies Otsu's Binarization
to separate text from background clearly.
"""
# 1. Convert to Grayscale if needed
if len(img_np.shape) == 3:
gray = cv2.cvtColor(img_np, cv2.COLOR_BGR2GRAY)
else:
gray = img_np
# 2. Apply Otsu's Thresholding (Automatic binary threshold)
# This makes text solid black and background solid white
_, thresh = cv2.threshold(gray, 0, 255, cv2.THRESH_BINARY + cv2.THRESH_OTSU)
return thresh
def calculate_vertical_gap_coverage(word_data: list, sep_x: int, page_height: float, gutter_width: int = 10) -> float:
"""
Calculates what percentage of the page's vertical text span is 'cleanly split' by the separator.
A valid column split should split > 65% of the page verticality.
"""
if not word_data:
return 0.0
# Determine the vertical span of the actual text content
y_coords = [w[2] for w in word_data] + [w[4] for w in word_data] # y1 and y2
min_y, max_y = min(y_coords), max(y_coords)
total_text_height = max_y - min_y
if total_text_height <= 0:
return 0.0
# Create a boolean array representing the Y-axis (1 pixel per unit)
gap_open_mask = np.ones(int(total_text_height) + 1, dtype=bool)
zone_left = sep_x - (gutter_width / 2)
zone_right = sep_x + (gutter_width / 2)
offset_y = int(min_y)
for _, x1, y1, x2, y2 in word_data:
# Check if this word horizontally interferes with the separator
if x2 > zone_left and x1 < zone_right:
y_start_idx = max(0, int(y1) - offset_y)
y_end_idx = min(len(gap_open_mask), int(y2) - offset_y)
if y_end_idx > y_start_idx:
gap_open_mask[y_start_idx:y_end_idx] = False
open_pixels = np.sum(gap_open_mask)
coverage_ratio = open_pixels / len(gap_open_mask)
return coverage_ratio
def calculate_x_gutters(word_data: list, params: Dict, page_height: float) -> List[int]:
"""
Calculates X-axis histogram and validates using BRIDGING DENSITY and Vertical Coverage.
"""
if not word_data: return []
x_points = []
# Use only word_data elements 1 (x1) and 3 (x2)
for item in word_data:
x_points.extend([item[1], item[3]])
if not x_points: return []
max_x = max(x_points)
# 1. Determine total text height for ratio calculation
y_coords = [item[2] for item in word_data] + [item[4] for item in word_data]
min_y, max_y = min(y_coords), max(y_coords)
total_text_height = max_y - min_y
if total_text_height <= 0: return []
# Histogram Setup
bin_size = params.get('cluster_bin_size', 5)
smoothing = params.get('cluster_smoothing', 1)
min_width = params.get('cluster_min_width', 20)
threshold_percentile = params.get('cluster_threshold_percentile', 85)
num_bins = int(np.ceil(max_x / bin_size))
hist, bin_edges = np.histogram(x_points, bins=num_bins, range=(0, max_x))
smoothed_hist = gaussian_filter1d(hist.astype(float), sigma=smoothing)
inverted_signal = np.max(smoothed_hist) - smoothed_hist
peaks, properties = find_peaks(
inverted_signal,
height=np.max(inverted_signal) - np.percentile(smoothed_hist, threshold_percentile),
distance=min_width / bin_size
)
if not peaks.size: return []
separator_x_coords = [int(bin_edges[p]) for p in peaks]
final_separators = []
for x_coord in separator_x_coords:
# --- CHECK 1: BRIDGING DENSITY (The "Cut Through" Check) ---
# Calculate the total vertical height of words that physically cross this line.
bridging_height = 0
bridging_count = 0
for item in word_data:
wx1, wy1, wx2, wy2 = item[1], item[2], item[3], item[4]
# Check if this word physically sits on top of the separator line
if wx1 < x_coord and wx2 > x_coord:
word_h = wy2 - wy1
bridging_height += word_h
bridging_count += 1
# Calculate Ratio: How much of the page's text height is blocked by these crossing words?
bridging_ratio = bridging_height / total_text_height
# THRESHOLD: If bridging blocks > 8% of page height, REJECT.
# This allows for page numbers or headers (usually < 5%) to cross, but NOT paragraphs.
if bridging_ratio > 0.08:
print(f" ❌ Separator X={x_coord} REJECTED: Bridging Ratio {bridging_ratio:.1%} (>15%) cuts through text.")
continue
# --- CHECK 2: VERTICAL GAP COVERAGE (The "Clean Split" Check) ---
# The gap must exist cleanly for > 65% of the text height.
coverage = calculate_vertical_gap_coverage(word_data, x_coord, page_height, gutter_width=min_width)
if coverage >= 0.80:
final_separators.append(x_coord)
print(f" -> Separator X={x_coord} ACCEPTED (Coverage: {coverage:.1%}, Bridging: {bridging_ratio:.1%})")
else:
print(f" ❌ Separator X={x_coord} REJECTED (Coverage: {coverage:.1%}, Bridging: {bridging_ratio:.1%})")
return sorted(final_separators)
def get_word_data_for_detection(page: fitz.Page, pdf_path: str, page_num: int,
top_margin_percent=0.10, bottom_margin_percent=0.10) -> list:
"""Extract word data with OCR caching to avoid redundant Tesseract runs."""
word_data = page.get_text("words")
if len(word_data) > 0:
word_data = [(w[4], w[0], w[1], w[2], w[3]) for w in word_data]
else:
if _ocr_cache.has_ocr(pdf_path, page_num):
word_data = _ocr_cache.get_ocr(pdf_path, page_num)
else:
try:
# --- OPTIMIZATION START ---
# 1. Render at Higher Resolution (Zoom 4.0 = ~300 DPI)
zoom_level = 4.0
pix = page.get_pixmap(matrix=fitz.Matrix(zoom_level, zoom_level))
# 2. Convert directly to OpenCV format (Faster than PIL)
img_np = np.frombuffer(pix.samples, dtype=np.uint8).reshape(pix.height, pix.width, pix.n)
if pix.n == 3: img_np = cv2.cvtColor(img_np, cv2.COLOR_RGB2BGR)
elif pix.n == 4: img_np = cv2.cvtColor(img_np, cv2.COLOR_RGBA2BGR)
# 3. Apply Preprocessing (Thresholding)
processed_img = preprocess_image_for_ocr(img_np)
# 4. Optimized Tesseract Config
# --psm 6: Assume a single uniform block of text (Great for columns/questions)
# --oem 3: Default engine (LSTM)
custom_config = r'--oem 3 --psm 6'
data = pytesseract.image_to_data(processed_img, output_type=pytesseract.Output.DICT, config=custom_config)
full_word_data = []
for i in range(len(data['level'])):
text = data['text'][i].strip()
if text:
# Scale coordinates back to PDF points
x1 = data['left'][i] / zoom_level
y1 = data['top'][i] / zoom_level
x2 = (data['left'][i] + data['width'][i]) / zoom_level
y2 = (data['top'][i] + data['height'][i]) / zoom_level
full_word_data.append((text, x1, y1, x2, y2))
word_data = full_word_data
_ocr_cache.set_ocr(pdf_path, page_num, word_data)
# --- OPTIMIZATION END ---
except Exception as e:
print(f" ❌ OCR Error in detection phase: {e}")
return []
# Apply margin filtering
page_height = page.rect.height
y_min = page_height * top_margin_percent
y_max = page_height * (1 - bottom_margin_percent)
return [d for d in word_data if d[2] >= y_min and d[4] <= y_max]
def pixmap_to_numpy(pix: fitz.Pixmap) -> np.ndarray:
img_data = pix.samples
img = np.frombuffer(img_data, dtype=np.uint8).reshape(pix.height, pix.width, pix.n)
if pix.n == 4: img = cv2.cvtColor(img, cv2.COLOR_RGBA2BGR)
elif pix.n == 3: img = cv2.cvtColor(img, cv2.COLOR_RGB2BGR)
return img
def extract_native_words_and_convert(fitz_page, scale_factor: float = 2.0) -> list:
raw_word_data = fitz_page.get_text("words")
converted_ocr_output = []
DEFAULT_CONFIDENCE = 99.0
for x1, y1, x2, y2, word, *rest in raw_word_data:
if not word.strip(): continue
x1_pix = int(x1 * scale_factor)
y1_pix = int(y1 * scale_factor)
x2_pix = int(x2 * scale_factor)
y2_pix = int(y2 * scale_factor)
converted_ocr_output.append({
'type': 'text',
'word': word,
'confidence': DEFAULT_CONFIDENCE,
'bbox': [x1_pix, y1_pix, x2_pix, y2_pix],
'y0': y1_pix, 'x0': x1_pix
})
return converted_ocr_output
def preprocess_and_ocr_page(original_img: np.ndarray, model, pdf_path: str,
page_num: int, fitz_page: fitz.Page,
pdf_name: str) -> Tuple[List[Dict[str, Any]], Optional[int]]:
"""
OPTIMIZED FLOW:
1. Run YOLO to find Equations/Tables.
2. Mask raw text with YOLO boxes.
3. Run Column Detection on the MASKED data.
4. Proceed with OCR (Native or High-Res Tesseract Fallback) and Output.
"""
global GLOBAL_FIGURE_COUNT, GLOBAL_EQUATION_COUNT
start_time_total = time.time()
if original_img is None:
print(f" ❌ Invalid image for page {page_num}.")
return None, None
# ====================================================================
# --- STEP 1: YOLO DETECTION ---
# ====================================================================
start_time_yolo = time.time()
results = model.predict(source=original_img, conf=CONF_THRESHOLD, imgsz=640, verbose=False)
relevant_detections = []
if results and results[0].boxes:
for box in results[0].boxes:
class_id = int(box.cls[0])
class_name = model.names[class_id]
if class_name in TARGET_CLASSES:
x1, y1, x2, y2 = box.xyxy[0].cpu().numpy().astype(int)
relevant_detections.append(
{'coords': (x1, y1, x2, y2), 'y1': y1, 'class': class_name, 'conf': float(box.conf[0])}
)
merged_detections = merge_overlapping_boxes(relevant_detections, IOU_MERGE_THRESHOLD)
print(f" [LOG] YOLO found {len(merged_detections)} objects in {time.time() - start_time_yolo:.3f}s.")
# ====================================================================
# --- STEP 2: PREPARE DATA FOR COLUMN DETECTION (MASKING) ---
# ====================================================================
# Note: This uses the updated 'get_word_data_for_detection' which has its own optimizations
raw_words_for_layout = get_word_data_for_detection(
fitz_page, pdf_path, page_num,
top_margin_percent=0.10, bottom_margin_percent=0.10
)
masked_word_data = merge_yolo_into_word_data(raw_words_for_layout, merged_detections, scale_factor=2.0)
# ====================================================================
# --- STEP 3: COLUMN DETECTION ---
# ====================================================================
page_width_pdf = fitz_page.rect.width
page_height_pdf = fitz_page.rect.height
column_detection_params = {
'cluster_bin_size': 2, 'cluster_smoothing': 2,
'cluster_min_width': 10, 'cluster_threshold_percentile': 85,
}
separators = calculate_x_gutters(masked_word_data, column_detection_params, page_height_pdf)
page_separator_x = None
if separators:
central_min = page_width_pdf * 0.35
central_max = page_width_pdf * 0.65
central_separators = [s for s in separators if central_min <= s <= central_max]
if central_separators:
center_x = page_width_pdf / 2
page_separator_x = min(central_separators, key=lambda x: abs(x - center_x))
print(f" ✅ Column Split Confirmed at X={page_separator_x:.1f}")
else:
print(" ⚠️ Gutter found off-center. Ignoring.")
else:
print(" -> Single Column Layout Confirmed.")
# ====================================================================
# --- STEP 4: COMPONENT EXTRACTION (Save Images) ---
# ====================================================================
start_time_components = time.time()
component_metadata = []
fig_count_page = 0
eq_count_page = 0
for detection in merged_detections:
x1, y1, x2, y2 = detection['coords']
class_name = detection['class']
if class_name == 'figure':
GLOBAL_FIGURE_COUNT += 1
counter = GLOBAL_FIGURE_COUNT
component_word = f"FIGURE{counter}"
fig_count_page += 1
elif class_name == 'equation':
GLOBAL_EQUATION_COUNT += 1
counter = GLOBAL_EQUATION_COUNT
component_word = f"EQUATION{counter}"
eq_count_page += 1
else:
continue
component_crop = original_img[y1:y2, x1:x2]
component_filename = f"{pdf_name}_page{page_num}_{class_name}{counter}.png"
cv2.imwrite(os.path.join(FIGURE_EXTRACTION_DIR, component_filename), component_crop)
y_midpoint = (y1 + y2) // 2
component_metadata.append({
'type': class_name, 'word': component_word,
'bbox': [int(x1), int(y1), int(x2), int(y2)],
'y0': int(y_midpoint), 'x0': int(x1)
})
# ====================================================================
# --- STEP 5: HYBRID OCR (Native Text + Cached Tesseract Fallback) ---
# ====================================================================
raw_ocr_output = []
scale_factor = 2.0 # Pipeline standard scale
try:
# Try getting native text first
raw_ocr_output = extract_native_words_and_convert(fitz_page, scale_factor=scale_factor)
except Exception as e:
print(f" ❌ Native text extraction failed: {e}")
# If native text is missing, fall back to OCR
if not raw_ocr_output:
if _ocr_cache.has_ocr(pdf_path, page_num):
print(f" ⚡ Using cached Tesseract OCR for page {page_num}")
cached_word_data = _ocr_cache.get_ocr(pdf_path, page_num)
for word_tuple in cached_word_data:
word_text, x1, y1, x2, y2 = word_tuple
# Scale from PDF points to Pipeline Pixels (2.0)
x1_pix = int(x1 * scale_factor)
y1_pix = int(y1 * scale_factor)
x2_pix = int(x2 * scale_factor)
y2_pix = int(y2 * scale_factor)
raw_ocr_output.append({
'type': 'text', 'word': word_text, 'confidence': 95.0,
'bbox': [x1_pix, y1_pix, x2_pix, y2_pix],
'y0': y1_pix, 'x0': x1_pix
})
else:
# === START OF OPTIMIZED OCR BLOCK ===
try:
# 1. Re-render Page at High Resolution (Zoom 4.0 = ~300 DPI)
# We do this specifically for OCR accuracy, separate from the pipeline image
ocr_zoom = 4.0
pix_ocr = fitz_page.get_pixmap(matrix=fitz.Matrix(ocr_zoom, ocr_zoom))
# Convert PyMuPDF Pixmap to OpenCV format
img_ocr_np = np.frombuffer(pix_ocr.samples, dtype=np.uint8).reshape(pix_ocr.height, pix_ocr.width, pix_ocr.n)
if pix_ocr.n == 3: img_ocr_np = cv2.cvtColor(img_ocr_np, cv2.COLOR_RGB2BGR)
elif pix_ocr.n == 4: img_ocr_np = cv2.cvtColor(img_ocr_np, cv2.COLOR_RGBA2BGR)
# 2. Preprocess (Binarization)
# Ensure 'preprocess_image_for_ocr' is defined at top of file!
processed_img = preprocess_image_for_ocr(img_ocr_np)
# 3. Run Tesseract with Optimized Configuration
# --oem 3: Default LSTM engine
# --psm 6: Assume a single uniform block of text (Critical for lists/questions)
custom_config = r'--oem 3 --psm 6'
hocr_data = pytesseract.image_to_data(
processed_img,
output_type=pytesseract.Output.DICT,
config=custom_config
)
for i in range(len(hocr_data['level'])):
text = hocr_data['text'][i].strip()
if text and hocr_data['conf'][i] > -1:
# 4. Coordinate Mapping
# We scanned at Zoom 4.0, but our pipeline expects Zoom 2.0.
# Scale Factor = (Target 2.0) / (Source 4.0) = 0.5
scale_adjustment = scale_factor / ocr_zoom
x1 = int(hocr_data['left'][i] * scale_adjustment)
y1 = int(hocr_data['top'][i] * scale_adjustment)
w = int(hocr_data['width'][i] * scale_adjustment)
h = int(hocr_data['height'][i] * scale_adjustment)
x2 = x1 + w
y2 = y1 + h
raw_ocr_output.append({
'type': 'text',
'word': text,
'confidence': float(hocr_data['conf'][i]),
'bbox': [x1, y1, x2, y2],
'y0': y1,
'x0': x1
})
except Exception as e:
print(f" ❌ Tesseract OCR Error: {e}")
# === END OF OPTIMIZED OCR BLOCK ===
# ====================================================================
# --- STEP 6: OCR CLEANING AND MERGING ---
# ====================================================================
items_to_sort = []
for ocr_word in raw_ocr_output:
is_suppressed = False
for component in component_metadata:
# Do not include words that are inside figure/equation boxes
ioa = calculate_ioa(ocr_word['bbox'], component['bbox'])
if ioa > IOA_SUPPRESSION_THRESHOLD:
is_suppressed = True
break
if not is_suppressed:
items_to_sort.append(ocr_word)
# Add figures/equations back into the flow as "words"
items_to_sort.extend(component_metadata)
# ====================================================================
# --- STEP 7: LINE-BASED SORTING ---
# ====================================================================
items_to_sort.sort(key=lambda x: (x['y0'], x['x0']))
lines = []
for item in items_to_sort:
placed = False
for line in lines:
y_ref = min(it['y0'] for it in line)
if abs(y_ref - item['y0']) < LINE_TOLERANCE:
line.append(item)
placed = True
break
if not placed and item['type'] in ['equation', 'figure']:
for line in lines:
y_ref = min(it['y0'] for it in line)
if abs(y_ref - item['y0']) < 20:
line.append(item)
placed = True
break
if not placed:
lines.append([item])
for line in lines:
line.sort(key=lambda x: x['x0'])
final_output = []
for line in lines:
for item in line:
data_item = {"word": item["word"], "bbox": item["bbox"], "type": item["type"]}
if 'tag' in item: data_item['tag'] = item['tag']
final_output.append(data_item)
return final_output, page_separator_x
def run_single_pdf_preprocessing(pdf_path: str, preprocessed_json_path: str) -> Optional[str]:
global GLOBAL_FIGURE_COUNT, GLOBAL_EQUATION_COUNT
GLOBAL_FIGURE_COUNT = 0
GLOBAL_EQUATION_COUNT = 0
_ocr_cache.clear()
print("\n" + "=" * 80)
print("--- 1. STARTING OPTIMIZED YOLO/OCR PREPROCESSING PIPELINE ---")
print("=" * 80)
if not os.path.exists(pdf_path):
print(f"❌ FATAL ERROR: Input PDF not found at {pdf_path}.")
return None
os.makedirs(os.path.dirname(preprocessed_json_path), exist_ok=True)
os.makedirs(FIGURE_EXTRACTION_DIR, exist_ok=True)
model = YOLO(WEIGHTS_PATH)
pdf_name = os.path.splitext(os.path.basename(pdf_path))[0]
try:
doc = fitz.open(pdf_path)
print(f"✅ Opened PDF: {pdf_name} ({doc.page_count} pages)")
except Exception as e:
print(f"❌ ERROR loading PDF file: {e}")
return None
all_pages_data = []
total_pages_processed = 0
mat = fitz.Matrix(2.0, 2.0)
print("\n[STEP 1.2: ITERATING PAGES - IN-MEMORY PROCESSING]")
for page_num_0_based in range(doc.page_count):
page_num = page_num_0_based + 1
print(f" -> Processing Page {page_num}/{doc.page_count}...")
fitz_page = doc.load_page(page_num_0_based)
try:
pix = fitz_page.get_pixmap(matrix=mat)
original_img = pixmap_to_numpy(pix)
except Exception as e:
print(f" ❌ Error converting page {page_num} to image: {e}")
continue
final_output, page_separator_x = preprocess_and_ocr_page(
original_img,
model,
pdf_path,
page_num,
fitz_page,
pdf_name
)
if final_output is not None:
page_data = {
"page_number": page_num,
"data": final_output,
"column_separator_x": page_separator_x
}
all_pages_data.append(page_data)
total_pages_processed += 1
else:
print(f" ❌ Skipped page {page_num} due to processing error.")
doc.close()
if all_pages_data:
try:
with open(preprocessed_json_path, 'w') as f:
json.dump(all_pages_data, f, indent=4)
print(f"\n ✅ Combined structured OCR JSON saved to: {os.path.basename(preprocessed_json_path)}")
except Exception as e:
print(f"❌ ERROR saving combined JSON output: {e}")
return None
else:
print("❌ WARNING: No page data generated. Halting pipeline.")
return None
print("\n" + "=" * 80)
print(f"--- YOLO/OCR PREPROCESSING COMPLETE ({total_pages_processed} pages processed) ---")
print("=" * 80)
return preprocessed_json_path
# ============================================================================
# --- PHASE 2: LAYOUTLMV3 INFERENCE FUNCTIONS ---
# ============================================================================
class LayoutLMv3ForTokenClassification(nn.Module):
def __init__(self, num_labels: int = NUM_LABELS):
super().__init__()
self.num_labels = num_labels
config = LayoutLMv3Config.from_pretrained("microsoft/layoutlmv3-base", num_labels=num_labels)
self.layoutlmv3 = LayoutLMv3Model.from_pretrained("microsoft/layoutlmv3-base", config=config)
self.classifier = nn.Linear(config.hidden_size, num_labels)
self.crf = CRF(num_labels)
self.init_weights()
def init_weights(self):
nn.init.xavier_uniform_(self.classifier.weight)
if self.classifier.bias is not None: nn.init.zeros_(self.classifier.bias)
def forward(self, input_ids: torch.Tensor, bbox: torch.Tensor, attention_mask: torch.Tensor, labels: Optional[torch.Tensor] = None):
outputs = self.layoutlmv3(input_ids=input_ids, bbox=bbox, attention_mask=attention_mask, return_dict=True)
sequence_output = outputs.last_hidden_state
emissions = self.classifier(sequence_output)
mask = attention_mask.bool()
if labels is not None:
loss = -self.crf(emissions, labels, mask=mask).mean()
return loss
else:
return self.crf.viterbi_decode(emissions, mask=mask)
def _merge_integrity(all_token_data: List[Dict[str, Any]],
column_separator_x: Optional[int]) -> List[List[Dict[str, Any]]]:
"""Splits the token data objects into column chunks based on a separator."""
if column_separator_x is None:
print(" -> No column separator. Treating as one chunk.")
return [all_token_data]
left_column_tokens, right_column_tokens = [], []
for token_data in all_token_data:
bbox_raw = token_data['bbox_raw_pdf_space']
center_x = (bbox_raw[0] + bbox_raw[2]) / 2
if center_x < column_separator_x:
left_column_tokens.append(token_data)
else:
right_column_tokens.append(token_data)
chunks = [c for c in [left_column_tokens, right_column_tokens] if c]
print(f" -> Data split into {len(chunks)} column chunk(s) using separator X={column_separator_x}.")
return chunks
def run_inference_and_get_raw_words(pdf_path: str, model_path: str,
preprocessed_json_path: str,
column_detection_params: Optional[Dict] = None) -> List[Dict[str, Any]]:
print("\n" + "=" * 80)
print("--- 2. STARTING LAYOUTLMV3 INFERENCE PIPELINE (Raw Word Output) ---")
print("=" * 80)
tokenizer = LayoutLMv3TokenizerFast.from_pretrained("microsoft/layoutlmv3-base")
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
print(f" -> Using device: {device}")
try:
model = LayoutLMv3ForTokenClassification(num_labels=NUM_LABELS)
checkpoint = torch.load(model_path, map_location=device)
model_state = checkpoint.get('model_state_dict', checkpoint)
fixed_state_dict = {key.replace('layoutlm.', 'layoutlmv3.'): value for key, value in model_state.items()}
model.load_state_dict(fixed_state_dict)
model.to(device)
model.eval()
print(f"✅ LayoutLMv3 Model loaded successfully from {os.path.basename(model_path)}.")
except Exception as e:
print(f"❌ FATAL ERROR during LayoutLMv3 model loading: {e}")
return []
try:
with open(preprocessed_json_path, 'r', encoding='utf-8') as f:
preprocessed_data = json.load(f)
print(f"✅ Loaded preprocessed data with {len(preprocessed_data)} pages.")
except Exception:
print("❌ Error loading preprocessed JSON.")
return []
try:
doc = fitz.open(pdf_path)
except Exception:
print("❌ Error loading PDF.")
return []
final_page_predictions = []
CHUNK_SIZE = 500
for page_data in preprocessed_data:
page_num_1_based = page_data['page_number']
page_num_0_based = page_num_1_based - 1
page_raw_predictions = []
print(f"\n *** Processing Page {page_num_1_based} ({len(page_data['data'])} raw tokens) ***")
fitz_page = doc.load_page(page_num_0_based)
page_width, page_height = fitz_page.rect.width, fitz_page.rect.height
print(f" -> Page dimensions: {page_width:.0f}x{page_height:.0f} (PDF points).")
all_token_data = []
scale_factor = 2.0
for item in page_data['data']:
raw_yolo_bbox = item['bbox']
bbox_pdf = [
int(raw_yolo_bbox[0] / scale_factor), int(raw_yolo_bbox[1] / scale_factor),
int(raw_yolo_bbox[2] / scale_factor), int(raw_yolo_bbox[3] / scale_factor)
]
normalized_bbox = [
max(0, min(1000, int(1000 * bbox_pdf[0] / page_width))),
max(0, min(1000, int(1000 * bbox_pdf[1] / page_height))),
max(0, min(1000, int(1000 * bbox_pdf[2] / page_width))),
max(0, min(1000, int(1000 * bbox_pdf[3] / page_height)))
]
all_token_data.append({
"word": item['word'],
"bbox_raw_pdf_space": bbox_pdf,
"bbox_normalized": normalized_bbox,
"item_original_data": item
})
if not all_token_data: continue
column_separator_x = page_data.get('column_separator_x', None)
if column_separator_x is not None:
print(f" -> Using SAVED column separator: X={column_separator_x}")
else:
print(" -> No column separator found. Assuming single chunk.")
token_chunks = _merge_integrity(all_token_data, column_separator_x)
total_chunks = len(token_chunks)
for chunk_idx, chunk_tokens in enumerate(token_chunks):
if not chunk_tokens: continue
chunk_words = [t['word'] for t in chunk_tokens]
chunk_normalized_bboxes = [t['bbox_normalized'] for t in chunk_tokens]
total_sub_chunks = (len(chunk_words) + CHUNK_SIZE - 1) // CHUNK_SIZE
for i in range(0, len(chunk_words), CHUNK_SIZE):
sub_chunk_idx = i // CHUNK_SIZE + 1
sub_words = chunk_words[i:i + CHUNK_SIZE]
sub_bboxes = chunk_normalized_bboxes[i:i + CHUNK_SIZE]
sub_tokens_data = chunk_tokens[i:i + CHUNK_SIZE]
print(f" -> Chunk {chunk_idx + 1}/{total_chunks}, Sub-chunk {sub_chunk_idx}/{total_sub_chunks}: {len(sub_words)} words. Running Inference...")
encoded_input = tokenizer(
sub_words, boxes=sub_bboxes, truncation=True, padding="max_length",
max_length=512, return_tensors="pt"
)
input_ids = encoded_input['input_ids'].to(device)
bbox = encoded_input['bbox'].to(device)
attention_mask = encoded_input['attention_mask'].to(device)
with torch.no_grad():
predictions_int_list = model(input_ids, bbox, attention_mask)
if not predictions_int_list: continue
predictions_int = predictions_int_list[0]
word_ids = encoded_input.word_ids()
word_idx_to_pred_id = {}
for token_idx, word_idx in enumerate(word_ids):
if word_idx is not None and word_idx < len(sub_words):
if word_idx not in word_idx_to_pred_id:
word_idx_to_pred_id[word_idx] = predictions_int[token_idx]
for current_word_idx in range(len(sub_words)):
pred_id_or_tensor = word_idx_to_pred_id.get(current_word_idx, 0)
pred_id = pred_id_or_tensor.item() if torch.is_tensor(pred_id_or_tensor) else pred_id_or_tensor
predicted_label = ID_TO_LABEL[pred_id]
original_token = sub_tokens_data[current_word_idx]
page_raw_predictions.append({
"word": original_token['word'],
"bbox": original_token['bbox_raw_pdf_space'],
"predicted_label": predicted_label,
"page_number": page_num_1_based
})
if page_raw_predictions:
final_page_predictions.append({
"page_number": page_num_1_based,
"data": page_raw_predictions
})
print(f" *** Page {page_num_1_based} Finalized: {len(page_raw_predictions)} labeled words. ***")
doc.close()
print("\n" + "=" * 80)
print("--- LAYOUTLMV3 INFERENCE COMPLETE ---")
print("=" * 80)
return final_page_predictions
def create_label_studio_span(page_results, start_idx, end_idx, label):
entity_words = [page_results[i]['word'] for i in range(start_idx, end_idx + 1)]
entity_bboxes = [page_results[i]['bbox'] for i in range(start_idx, end_idx + 1)]
x0 = min(bbox[0] for bbox in entity_bboxes)
y0 = min(bbox[1] for bbox in entity_bboxes)
x1 = max(bbox[2] for bbox in entity_bboxes)
y1 = max(bbox[3] for bbox in entity_bboxes)
all_words_on_page = [r['word'] for r in page_results]
start_char = len(" ".join(all_words_on_page[:start_idx]))
if start_idx != 0: start_char += 1
end_char = start_char + len(" ".join(entity_words))
span_text = " ".join(entity_words)
return {
"from_name": "label", "to_name": "text", "type": "labels",
"value": {
"start": start_char, "end": end_char, "text": span_text,
"labels": [label],
"bbox": {"x": x0, "y": y0, "width": x1 - x0, "height": y1 - y0}
}, "score": 0.99
}
def convert_raw_predictions_to_label_studio(page_data_list, output_path: str):
final_tasks = []
print("\n[PHASE: LABEL STUDIO CONVERSION]")
for page_data in page_data_list:
page_num = page_data['page_number']
page_results = page_data['data']
if not page_results: continue
original_words = [r['word'] for r in page_results]
text_string = " ".join(original_words)
results = []
current_entity_label = None
current_entity_start_word_index = None
for i, pred_item in enumerate(page_results):
label = pred_item['predicted_label']
tag_only = label.split('-', 1)[-1] if '-' in label else label
if label.startswith('B-'):
if current_entity_label:
results.append(create_label_studio_span(page_results, current_entity_start_word_index, i - 1, current_entity_label))
current_entity_label = tag_only
current_entity_start_word_index = i
elif label.startswith('I-') and current_entity_label == tag_only:
continue
else:
if current_entity_label:
results.append(create_label_studio_span(page_results, current_entity_start_word_index, i - 1, current_entity_label))
current_entity_label = None
current_entity_start_word_index = None
if current_entity_label:
results.append(create_label_studio_span(page_results, current_entity_start_word_index, len(page_results) - 1, current_entity_label))
final_tasks.append({
"data": {
"text": text_string, "original_words": original_words,
"original_bboxes": [r['bbox'] for r in page_results]
},
"annotations": [{"result": results}],
"meta": {"page_number": page_num}
})
with open(output_path, "w", encoding='utf-8') as f:
json.dump(final_tasks, f, indent=2, ensure_ascii=False)
print(f"\n✅ Label Studio tasks saved to {output_path}.")
# ============================================================================
# --- PHASE 3: BIO TO STRUCTURED JSON DECODER ---
# ============================================================================
def convert_bio_to_structured_json_relaxed(input_path: str, output_path: str) -> Optional[List[Dict[str, Any]]]:
print("\n" + "=" * 80)
print("--- 3. STARTING BIO TO STRUCTURED JSON DECODING ---")
print("=" * 80)
try:
with open(input_path, 'r', encoding='utf-8') as f:
predictions_by_page = json.load(f)
except Exception as e:
print(f"❌ Error loading raw prediction file: {e}")
return None
predictions = []
for page_item in predictions_by_page:
if isinstance(page_item, dict) and 'data' in page_item:
predictions.extend(page_item['data'])
structured_data = []
current_item = None
current_option_key = None
current_passage_buffer = []
current_text_buffer = []
first_question_started = False
last_entity_type = None
just_finished_i_option = False
is_in_new_passage = False
def finalize_passage_to_item(item, passage_buffer):
if passage_buffer:
passage_text = re.sub(r'\s{2,}', ' ', ' '.join(passage_buffer)).strip()
if item.get('passage'): item['passage'] += ' ' + passage_text
else: item['passage'] = passage_text
passage_buffer.clear()
for item in predictions:
word = item['word']
label = item['predicted_label']
entity_type = label[2:].strip() if label.startswith(('B-', 'I-')) else None
current_text_buffer.append(word)
previous_entity_type = last_entity_type
is_passage_label = (entity_type == 'PASSAGE')
if not first_question_started:
if label != 'B-QUESTION' and not is_passage_label:
just_finished_i_option = False
is_in_new_passage = False
continue
if is_passage_label:
current_passage_buffer.append(word)
last_entity_type = 'PASSAGE'
just_finished_i_option = False
is_in_new_passage = False
continue
if label == 'B-QUESTION':
if not first_question_started:
header_text = ' '.join(current_text_buffer[:-1]).strip()
if header_text or current_passage_buffer:
metadata_item = {'type': 'METADATA', 'passage': ''}
finalize_passage_to_item(metadata_item, current_passage_buffer)
if header_text: metadata_item['text'] = header_text
structured_data.append(metadata_item)
first_question_started = True
current_text_buffer = [word]
if current_item is not None:
finalize_passage_to_item(current_item, current_passage_buffer)
current_item['text'] = ' '.join(current_text_buffer[:-1]).strip()
structured_data.append(current_item)
current_text_buffer = [word]
current_item = {
'question': word, 'options': {}, 'answer': '', 'passage': '', 'text': ''
}
current_option_key = None
last_entity_type = 'QUESTION'
just_finished_i_option = False
is_in_new_passage = False
continue
if current_item is not None:
if is_in_new_passage:
# 🔑 Robust Initialization and Appending for 'new_passage'
if 'new_passage' not in current_item:
current_item['new_passage'] = word
else:
current_item['new_passage'] += f' {word}'
if label.startswith('B-') or (label.startswith('I-') and entity_type != 'PASSAGE'):
is_in_new_passage = False
if label.startswith(('B-', 'I-')): last_entity_type = entity_type
continue
is_in_new_passage = False
if label.startswith('B-'):
if entity_type in ['QUESTION', 'OPTION', 'ANSWER', 'SECTION_HEADING']:
finalize_passage_to_item(current_item, current_passage_buffer)
current_passage_buffer = []
last_entity_type = entity_type
if entity_type == 'PASSAGE':
if previous_entity_type == 'OPTION' and just_finished_i_option:
current_item['new_passage'] = word # Initialize the new passage start
is_in_new_passage = True
else:
current_passage_buffer.append(word)
elif entity_type == 'OPTION':
current_option_key = word
current_item['options'][current_option_key] = word
just_finished_i_option = False
elif entity_type == 'ANSWER':
current_item['answer'] = word
current_option_key = None
just_finished_i_option = False
elif entity_type == 'QUESTION':
current_item['question'] += f' {word}'
just_finished_i_option = False
elif label.startswith('I-'):
if entity_type == 'QUESTION':
current_item['question'] += f' {word}'
elif entity_type == 'PASSAGE':
if previous_entity_type == 'OPTION' and just_finished_i_option:
current_item['new_passage'] = word # Initialize the new passage start
is_in_new_passage = True
else:
if not current_passage_buffer: last_entity_type = 'PASSAGE'
current_passage_buffer.append(word)
elif entity_type == 'OPTION' and current_option_key is not None:
current_item['options'][current_option_key] += f' {word}'
just_finished_i_option = True
elif entity_type == 'ANSWER':
current_item['answer'] += f' {word}'
just_finished_i_option = (entity_type == 'OPTION')
elif label == 'O':
if last_entity_type == 'QUESTION':
current_item['question'] += f' {word}'
just_finished_i_option = False
if current_item is not None:
finalize_passage_to_item(current_item, current_passage_buffer)
current_item['text'] = ' '.join(current_text_buffer).strip()
structured_data.append(current_item)
for item in structured_data:
item['text'] = re.sub(r'\s{2,}', ' ', item['text']).strip()
if 'new_passage' in item:
item['new_passage'] = re.sub(r'\s{2,}', ' ', item['new_passage']).strip()
try:
with open(output_path, 'w', encoding='utf-8') as f:
json.dump(structured_data, f, indent=2, ensure_ascii=False)
except Exception: pass
return structured_data
def create_query_text(entry: Dict[str, Any]) -> str:
"""Combines question and options into a single string for similarity matching."""
query_parts = []
if entry.get("question"):
query_parts.append(entry["question"])
for key in ["options", "options_text"]:
options = entry.get(key)
if options and isinstance(options, dict):
for value in options.values():
if value and isinstance(value, str):
query_parts.append(value)
return " ".join(query_parts)
def calculate_similarity(doc1: str, doc2: str) -> float:
"""Calculates Cosine Similarity between two text strings."""
if not doc1 or not doc2:
return 0.0
def clean_text(text):
return re.sub(r'^\s*[\(\d\w]+\.?\s*', '', text, flags=re.MULTILINE)
clean_doc1 = clean_text(doc1)
clean_doc2 = clean_text(doc2)
corpus = [clean_doc1, clean_doc2]
try:
vectorizer = CountVectorizer(stop_words='english', lowercase=True, token_pattern=r'(?u)\b\w\w+\b')
tfidf_matrix = vectorizer.fit_transform(corpus)
if tfidf_matrix.shape[1] == 0:
return 0.0
vectors = tfidf_matrix.toarray()
# Handle cases where vectors might be empty or too short
if len(vectors) < 2:
return 0.0
score = cosine_similarity(vectors[0:1], vectors[1:2])[0][0]
return score
except Exception:
return 0.0
def process_context_linking(data: List[Dict[str, Any]]) -> List[Dict[str, Any]]:
"""
Links questions to passages based on 'passage' flow vs 'new_passage' priority.
Includes 'Decay Logic': If 2 consecutive questions fail to match the active passage,
the passage context is dropped to prevent false positives downstream.
"""
print("\n" + "=" * 80)
print("--- STARTING CONTEXT LINKING (WITH DECAY LOGIC) ---")
print("=" * 80)
if not data: return []
# --- PHASE 1: IDENTIFY PASSAGE DEFINERS ---
passage_definer_indices = []
for i, entry in enumerate(data):
if entry.get("passage") and entry["passage"].strip():
passage_definer_indices.append(i)
if entry.get("new_passage") and entry["new_passage"].strip():
if i not in passage_definer_indices:
passage_definer_indices.append(i)
# --- PHASE 2: CONTEXT TRANSFER & LINKING ---
current_passage_text = None
current_new_passage_text = None
# NEW: Counter to track consecutive linking failures
consecutive_failures = 0
MAX_CONSECUTIVE_FAILURES = 2
for i, entry in enumerate(data):
item_type = entry.get("type", "Question")
# A. UNCONDITIONALLY UPDATE CONTEXTS (And Reset Decay Counter)
if entry.get("passage") and entry["passage"].strip():
current_passage_text = entry["passage"]
consecutive_failures = 0 # Reset because we have fresh explicit context
# print(f" [Flow] Updated Standard Context from Item {i}")
if entry.get("new_passage") and entry["new_passage"].strip():
current_new_passage_text = entry["new_passage"]
# We don't necessarily reset standard failures here as this is a local override
# B. QUESTION LINKING
if entry.get("question") and item_type != "METADATA":
combined_query = create_query_text(entry)
# Skip if query is too short (noise)
if len(combined_query.strip()) < 5:
continue
# Calculate scores
score_old = calculate_similarity(current_passage_text, combined_query) if current_passage_text else 0.0
score_new = calculate_similarity(current_new_passage_text, combined_query) if current_new_passage_text else 0.0
q_preview = entry['question'][:30] + '...'
# RESOLUTION LOGIC
linked = False
# 1. Prefer New Passage if significantly better
if current_new_passage_text and (score_new > score_old + RESOLUTION_MARGIN) and (score_new >= SIMILARITY_THRESHOLD):
entry["passage"] = current_new_passage_text
print(f" [Linker] 🚀 Q{i} ('{q_preview}') -> NEW PASSAGE (Score: {score_new:.3f})")
linked = True
# Note: We do not reset 'consecutive_failures' for the standard passage here,
# because we matched the *new* passage, not the standard one.
# 2. Otherwise use Standard Passage if it meets threshold
elif current_passage_text and (score_old >= SIMILARITY_THRESHOLD):
entry["passage"] = current_passage_text
print(f" [Linker] ✅ Q{i} ('{q_preview}') -> STANDARD PASSAGE (Score: {score_old:.3f})")
linked = True
consecutive_failures = 0 # Success! Reset the kill switch.
if not linked:
# 3. DECAY LOGIC
if current_passage_text:
consecutive_failures += 1
print(f" [Linker] ⚠️ Q{i} NOT LINKED. (Failures: {consecutive_failures}/{MAX_CONSECUTIVE_FAILURES})")
if consecutive_failures >= MAX_CONSECUTIVE_FAILURES:
print(f" [Linker] 🗑️ Context dropped due to {consecutive_failures} consecutive misses.")
current_passage_text = None
consecutive_failures = 0
else:
print(f" [Linker] ⚠️ Q{i} NOT LINKED (No active context).")
# --- PHASE 3: CLEANUP AND INTERPOLATION ---
print(" [Linker] Running Cleanup & Interpolation...")
# 3A. Self-Correction (Remove weak links)
for i in passage_definer_indices:
entry = data[i]
if entry.get("question") and entry.get("type") != "METADATA":
passage_to_check = entry.get("passage") or entry.get("new_passage")
if passage_to_check:
self_sim = calculate_similarity(passage_to_check, create_query_text(entry))
if self_sim < SIMILARITY_THRESHOLD:
entry["passage"] = ""
if "new_passage" in entry: entry["new_passage"] = ""
print(f" [Cleanup] Removed weak link for Q{i}")
# 3B. Interpolation (Fill gaps)
# We only interpolate if the gap is strictly 1 question wide to avoid undoing the decay logic
for i in range(1, len(data) - 1):
current_entry = data[i]
is_gap = current_entry.get("question") and not current_entry.get("passage")
if is_gap:
prev_p = data[i - 1].get("passage")
next_p = data[i + 1].get("passage")
if prev_p and next_p and (prev_p == next_p) and prev_p.strip():
current_entry["passage"] = prev_p
print(f" [Linker] 🥪 Q{i} Interpolated from neighbors.")
return data
def correct_misaligned_options(structured_data: List[Dict[str, Any]]) -> List[Dict[str, Any]]:
print("\n" + "=" * 80)
print("--- 5. STARTING POST-PROCESSING: OPTION ALIGNMENT CORRECTION ---")
print("=" * 80)
tag_pattern = re.compile(r'(EQUATION\d+|FIGURE\d+)')
corrected_count = 0
for item in structured_data:
if item.get('type') in ['METADATA']: continue
options = item.get('options')
if not options or len(options) < 2: continue
option_keys = list(options.keys())
for i in range(len(option_keys) - 1):
current_key = option_keys[i]
next_key = option_keys[i + 1]
current_value = options[current_key].strip()
next_value = options[next_key].strip()
is_current_empty = current_value == current_key
content_in_next = next_value.replace(next_key, '', 1).strip()
tags_in_next = tag_pattern.findall(content_in_next)
has_two_tags = len(tags_in_next) == 2
if is_current_empty and has_two_tags:
tag_to_move = tags_in_next[0]
options[current_key] = f"{current_key} {tag_to_move}".strip()
options[next_key] = f"{next_key} {tags_in_next[1]}".strip()
corrected_count += 1
print(f"✅ Option alignment correction finished. Total corrections: {corrected_count}.")
return structured_data
# ============================================================================
# --- PHASE 4: IMAGE EMBEDDING (Base64) ---
# ============================================================================
def get_base64_for_file(filepath: str) -> str:
try:
with open(filepath, 'rb') as f:
return base64.b64encode(f.read()).decode('utf-8')
except Exception as e:
print(f" ❌ Error encoding file {filepath}: {e}")
return ""
def embed_images_as_base64_in_memory(structured_data: List[Dict[str, Any]], figure_extraction_dir: str) -> List[Dict[str, Any]]:
print("\n" + "=" * 80)
print("--- 4. STARTING IMAGE EMBEDDING (Base64) ---")
print("=" * 80)
if not structured_data: return []
image_files = glob.glob(os.path.join(figure_extraction_dir, "*.png"))
image_lookup = {}
tag_regex = re.compile(r'(figure|equation)(\d+)', re.IGNORECASE)
for filepath in image_files:
filename = os.path.basename(filepath)
match = re.search(r'_(figure|equation)(\d+)\.png$', filename, re.IGNORECASE)
if match:
key = f"{match.group(1).upper()}{match.group(2)}"
image_lookup[key] = filepath
print(f" -> Found {len(image_lookup)} image components.")
final_structured_data = []
for item in structured_data:
text_fields = [item.get('question', ''), item.get('passage', '')]
if 'options' in item:
for opt_val in item['options'].values(): text_fields.append(opt_val)
if 'new_passage' in item: text_fields.append(item['new_passage'])
unique_tags_to_embed = set()
for text in text_fields:
if not text: continue
for match in tag_regex.finditer(text):
tag = match.group(0).upper()
if tag in image_lookup: unique_tags_to_embed.add(tag)
for tag in sorted(list(unique_tags_to_embed)):
filepath = image_lookup[tag]
base64_code = get_base64_for_file(filepath)
base_key = tag.replace(' ', '').lower()
item[base_key] = base64_code
final_structured_data.append(item)
print(f"✅ Image embedding complete.")
return final_structured_data
# ============================================================================
# --- MAIN FUNCTION ---
# ============================================================================
def run_document_pipeline(input_pdf_path: str, layoutlmv3_model_path: str, label_studio_output_path: str) -> Optional[List[Dict[str, Any]]]:
if not os.path.exists(input_pdf_path): return None
print("\n" + "#" * 80)
print("### STARTING OPTIMIZED FULL DOCUMENT ANALYSIS PIPELINE ###")
print("#" * 80)
pdf_name = os.path.splitext(os.path.basename(input_pdf_path))[0]
temp_pipeline_dir = os.path.join(tempfile.gettempdir(), f"pipeline_run_{pdf_name}_{os.getpid()}")
os.makedirs(temp_pipeline_dir, exist_ok=True)
preprocessed_json_path = os.path.join(temp_pipeline_dir, f"{pdf_name}_preprocessed.json")
raw_output_path = os.path.join(temp_pipeline_dir, f"{pdf_name}_raw_predictions.json")
structured_intermediate_output_path = os.path.join(temp_pipeline_dir, f"{pdf_name}_structured_intermediate.json")
final_result = None
try:
# Phase 1: Preprocessing with YOLO First + Masking
preprocessed_json_path_out = run_single_pdf_preprocessing(input_pdf_path, preprocessed_json_path)
if not preprocessed_json_path_out: return None
# Phase 2: Inference
page_raw_predictions_list = run_inference_and_get_raw_words(
input_pdf_path, layoutlmv3_model_path, preprocessed_json_path_out
)
if not page_raw_predictions_list: return None
with open(raw_output_path, 'w', encoding='utf-8') as f:
json.dump(page_raw_predictions_list, f, indent=4)
# Phase 3: Decoding
structured_data_list = convert_bio_to_structured_json_relaxed(
raw_output_path, structured_intermediate_output_path
)
if not structured_data_list: return None
structured_data_list = correct_misaligned_options(structured_data_list)
structured_data_list = process_context_linking(structured_data_list)
try:
convert_raw_predictions_to_label_studio(page_raw_predictions_list, label_studio_output_path)
except Exception as e:
print(f"❌ Error during Label Studio conversion: {e}")
# Phase 4: Embedding
final_result = embed_images_as_base64_in_memory(structured_data_list, FIGURE_EXTRACTION_DIR)
except Exception as e:
print(f"❌ FATAL ERROR: {e}")
import traceback
traceback.print_exc()
return None
finally:
try:
for f in glob.glob(os.path.join(temp_pipeline_dir, '*')):
os.remove(f)
os.rmdir(temp_pipeline_dir)
except Exception: pass
print("\n" + "#" * 80)
print("### OPTIMIZED PIPELINE EXECUTION COMPLETE ###")
print("#" * 80)
return final_result
if __name__ == "__main__":
parser = argparse.ArgumentParser(description="Complete Pipeline")
parser.add_argument("--input_pdf", type=str, required=True, help="Input PDF")
parser.add_argument("--layoutlmv3_model_path", type=str, default=DEFAULT_LAYOUTLMV3_MODEL_PATH, help="Model Path")
parser.add_argument("--ls_output_path", type=str, default=None, help="Label Studio Output Path")
args = parser.parse_args()
pdf_name = os.path.splitext(os.path.basename(args.input_pdf))[0]
final_output_path = os.path.abspath(f"{pdf_name}_final_output_embedded.json")
ls_output_path = os.path.abspath(args.ls_output_path if args.ls_output_path else f"{pdf_name}_label_studio_tasks.json")
final_json_data = run_document_pipeline(args.input_pdf, args.layoutlmv3_model_path, ls_output_path)
if final_json_data:
with open(final_output_path, 'w', encoding='utf-8') as f:
json.dump(final_json_data, f, indent=2, ensure_ascii=False)
print(f"\n✅ Final Data Saved: {final_output_path}")
else:
print("\n❌ Pipeline Failed.")
sys.exit(1) |