File size: 1,861 Bytes
e915946
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
from datasets import load_dataset
from transformers import AutoTokenizer, AutoModelForSequenceClassification, Trainer, TrainingArguments
import torch
import numpy as np

# Load dataset
dataset = load_dataset("imranraad/github-emotion-love")

# Multi-label setup
emotions = ["Anger", "Love", "Fear", "Joy", "Sadness", "Surprise"]

# Tokenizer
model_name = "distilbert-base-uncased"
tokenizer = AutoTokenizer.from_pretrained(model_name)

def tokenize(batch):
    return tokenizer(batch['modified_comment'], padding='max_length', truncation=True, max_length=128)

dataset = dataset.map(tokenize, batched=True)

# Convert labels to list of floats for multi-label
def format_labels(batch):
    batch["labels"] = [[batch[emo][i] for emo in emotions] for i in range(len(batch[emotions[0]]))]
    return batch

dataset = dataset.map(format_labels, batched=True)

# Load model
model = AutoModelForSequenceClassification.from_pretrained(
    model_name,
    num_labels=len(emotions),
    problem_type="multi_label_classification"
)

# Training arguments
training_args = TrainingArguments(
    output_dir="./model",
    evaluation_strategy="epoch",
    learning_rate=2e-5,
    per_device_train_batch_size=16,
    per_device_eval_batch_size=16,
    num_train_epochs=3,
    weight_decay=0.01,
    logging_dir="./logs",
    save_strategy="epoch"
)

# Metrics
def compute_metrics(pred):
    logits, labels = pred
    sigmoid = torch.nn.Sigmoid()
    probs = sigmoid(torch.tensor(logits))
    preds = (probs > 0.5).float()
    accuracy = (preds == torch.tensor(labels)).float().mean()
    return {"accuracy": accuracy.item()}

# Trainer
trainer = Trainer(
    model=model,
    args=training_args,
    train_dataset=dataset["train"],
    eval_dataset=dataset["test"],
    tokenizer=tokenizer,
    compute_metrics=compute_metrics
)

trainer.train()
trainer.save_model("./model")