Spaces:
Runtime error
Runtime error
Create train_model.py
Browse files- train_model.py +68 -0
train_model.py
ADDED
|
@@ -0,0 +1,68 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from datasets import load_dataset
|
| 2 |
+
from transformers import AutoTokenizer, AutoModelForSequenceClassification, Trainer, TrainingArguments
|
| 3 |
+
import torch
|
| 4 |
+
import numpy as np
|
| 5 |
+
|
| 6 |
+
# Load dataset
|
| 7 |
+
dataset = load_dataset("imranraad/github-emotion-love")
|
| 8 |
+
|
| 9 |
+
# Multi-label setup
|
| 10 |
+
emotions = ["Anger", "Love", "Fear", "Joy", "Sadness", "Surprise"]
|
| 11 |
+
|
| 12 |
+
# Tokenizer
|
| 13 |
+
model_name = "distilbert-base-uncased"
|
| 14 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
| 15 |
+
|
| 16 |
+
def tokenize(batch):
|
| 17 |
+
return tokenizer(batch['modified_comment'], padding='max_length', truncation=True, max_length=128)
|
| 18 |
+
|
| 19 |
+
dataset = dataset.map(tokenize, batched=True)
|
| 20 |
+
|
| 21 |
+
# Convert labels to list of floats for multi-label
|
| 22 |
+
def format_labels(batch):
|
| 23 |
+
batch["labels"] = [[batch[emo][i] for emo in emotions] for i in range(len(batch[emotions[0]]))]
|
| 24 |
+
return batch
|
| 25 |
+
|
| 26 |
+
dataset = dataset.map(format_labels, batched=True)
|
| 27 |
+
|
| 28 |
+
# Load model
|
| 29 |
+
model = AutoModelForSequenceClassification.from_pretrained(
|
| 30 |
+
model_name,
|
| 31 |
+
num_labels=len(emotions),
|
| 32 |
+
problem_type="multi_label_classification"
|
| 33 |
+
)
|
| 34 |
+
|
| 35 |
+
# Training arguments
|
| 36 |
+
training_args = TrainingArguments(
|
| 37 |
+
output_dir="./model",
|
| 38 |
+
evaluation_strategy="epoch",
|
| 39 |
+
learning_rate=2e-5,
|
| 40 |
+
per_device_train_batch_size=16,
|
| 41 |
+
per_device_eval_batch_size=16,
|
| 42 |
+
num_train_epochs=3,
|
| 43 |
+
weight_decay=0.01,
|
| 44 |
+
logging_dir="./logs",
|
| 45 |
+
save_strategy="epoch"
|
| 46 |
+
)
|
| 47 |
+
|
| 48 |
+
# Metrics
|
| 49 |
+
def compute_metrics(pred):
|
| 50 |
+
logits, labels = pred
|
| 51 |
+
sigmoid = torch.nn.Sigmoid()
|
| 52 |
+
probs = sigmoid(torch.tensor(logits))
|
| 53 |
+
preds = (probs > 0.5).float()
|
| 54 |
+
accuracy = (preds == torch.tensor(labels)).float().mean()
|
| 55 |
+
return {"accuracy": accuracy.item()}
|
| 56 |
+
|
| 57 |
+
# Trainer
|
| 58 |
+
trainer = Trainer(
|
| 59 |
+
model=model,
|
| 60 |
+
args=training_args,
|
| 61 |
+
train_dataset=dataset["train"],
|
| 62 |
+
eval_dataset=dataset["test"],
|
| 63 |
+
tokenizer=tokenizer,
|
| 64 |
+
compute_metrics=compute_metrics
|
| 65 |
+
)
|
| 66 |
+
|
| 67 |
+
trainer.train()
|
| 68 |
+
trainer.save_model("./model")
|