Alirector-bart

Introduction

The bart-large model checkpoint released from paper: Alirector: Alignment-Enhanced Chinese Grammatical Error Corrector

github: https://github.com/yanghh2000/Alirector

Usage

Please follow our github to install the required python packages first.

And then use like this:

from transformers import BartForConditionalGeneration, BertTokenizer
import torch

model_path = "yanghh7/Alirector-bart"

tokenizer = BertTokenizer.from_pretrained(model_path)
    
model = BartForConditionalGeneration.from_pretrained(model_path).cuda()

while True:
    source = input("输入句子:")

    model_inputs = tokenizer(
        source,
        return_tensors='pt',
        return_token_type_ids=False,
    ).to(model.device)
    
    with torch.no_grad():
        output = model.generate(**model_inputs,)
    response = tokenizer.batch_decode(output.detach().cpu(), skip_special_tokens=True)[0]
    response = response.replace(' ', '')
    print(response)

Citation

@inproceedings{yang-quan-2024-alirector,
    title = "Alirector: Alignment-Enhanced {C}hinese Grammatical Error Corrector",
    author = "Yang, Haihui and Quan, Xiaojun",
    booktitle = "Findings of the Association for Computational Linguistics: ACL 2024",
    year = "2024",
}
Downloads last month
6
Inference Providers NEW
This model isn't deployed by any Inference Provider. 🙋 Ask for provider support

Model tree for yanghh7/Alirector-bart

Finetuned
(3)
this model