Tiny dummy models
Collection
Randomly initialized tiny models for debugging/testing purpose
•
143 items
•
Updated
•
6
This tiny model is intended for debugging. It is randomly initialized using the configuration adapted from Zyphra/ZAYA1-reasoning-base.
from transformers import pipeline
model_id = "yujiepan/zaya1-tiny-random"
pipe = pipeline('text-generation', model=model_id,
device='cuda', dtype="bfloat16")
print(pipe('Hello World!'))
import json
from pathlib import Path
import accelerate
import torch
from huggingface_hub import file_exists, hf_hub_download
from transformers import (
AutoConfig,
AutoModelForCausalLM,
AutoProcessor,
AutoTokenizer,
GenerationConfig,
set_seed,
)
source_model_id = "Zyphra/ZAYA1-reasoning-base"
save_folder = "/tmp/yujiepan/zaya1-tiny-random"
processor = AutoTokenizer.from_pretrained(
source_model_id, trust_remote_code=True)
processor.save_pretrained(save_folder)
with open(hf_hub_download(source_model_id, filename='config.json', repo_type='model'), 'r', encoding='utf-8') as f:
config_json = json.load(f)
config_json['hidden_size'] = 512
config_json['num_attention_heads'] = 4
config_json['num_key_value_heads'] = 1
config_json['num_hidden_layers'] = 2
# bug. need to first set False and then hack
config_json['tie_word_embeddings'] = False
config_json['cca_num_q_heads'] = [2, 0]
config_json['ffn_hidden_size_list'] = [0, 32]
config_json['num_query_groups_list'] = [1, 0]
config_json['zaya_layers'] = ['a', 16]
config_json['zaya_mlp_expansion'] = [0, 8]
with open(f"{save_folder}/config.json", "w", encoding='utf-8') as f:
json.dump(config_json, f, indent=2)
config = AutoConfig.from_pretrained(
save_folder,
trust_remote_code=True,
)
print(config)
torch.set_default_dtype(torch.bfloat16)
model = AutoModelForCausalLM.from_config(config)
model.lm_head = None
torch.set_default_dtype(torch.float32)
if file_exists(filename="generation_config.json", repo_id=source_model_id, repo_type='model'):
model.generation_config = GenerationConfig.from_pretrained(
source_model_id, trust_remote_code=True,
)
set_seed(42)
model = model.cpu()
with torch.no_grad():
for name, p in sorted(model.named_parameters()):
torch.nn.init.normal_(p, 0, 0.1)
print(name, p.shape)
model.save_pretrained(save_folder)
with open(f"{save_folder}/config.json", 'r', encoding='utf-8') as f:
config_json = json.load(f)
config_json['tie_word_embeddings'] = True
with open(f"{save_folder}/config.json", "w", encoding='utf-8') as f:
json.dump(config_json, f, indent=2)
ZayaForCausalLM(
(model): ZayaModel(
(embed_tokens): Embedding(262272, 512, padding_idx=0)
(layers): ModuleList(
(0): ZayaDecoderATTLayer(
(self_attn): ZayaSdpaAttention(
(o_proj): Linear(in_features=256, out_features=512, bias=False)
(qkv): CCA(
(linear_q): Linear(in_features=512, out_features=256, bias=False)
(linear_k): Linear(in_features=512, out_features=128, bias=False)
(val_proj1): Linear(in_features=512, out_features=64, bias=False)
(val_proj2): Linear(in_features=512, out_features=64, bias=False)
(conv_qk): Sequential(
(0): Conv1d(384, 384, kernel_size=(2,), stride=(1,), groups=384)
(1): Conv1d(384, 384, kernel_size=(2,), stride=(1,), groups=3)
)
)
)
(input_norm): ZayaRMSNorm((512,), eps=1e-05)
(res_scale): ResidualScaling()
)
(1): ZayaDecoderMLPLayer(
(zaya_block): ZayaBlock(
(router): ZayaRouter(
(down_proj): Linear(in_features=512, out_features=8, bias=True)
(rmsnorm_eda): ZayaRMSNorm((8,), eps=1e-06)
(non_linearity): GELU(approximate='none')
(router_mlp): Sequential(
(0): Linear(in_features=8, out_features=8, bias=True)
(1): GELU(approximate='none')
(2): Linear(in_features=8, out_features=8, bias=True)
(3): GELU(approximate='none')
(4): Linear(in_features=8, out_features=17, bias=False)
)
)
(experts): SequentialMLP(
(local_experts): ModuleList(
(0-15): 16 x MLP(
(linear_fc1): Linear(in_features=512, out_features=32, bias=False)
(linear_fc2): Linear(in_features=16, out_features=512, bias=False)
)
)
)
)
(input_norm): ZayaRMSNorm((512,), eps=1e-05)
(res_scale): ResidualScaling()
)
)
(res_scale): ResidualScaling()
(final_norm): ZayaRMSNorm((512,), eps=1e-05)
(rotary_emb): ZayaRotaryEmbedding()
)
(lm_head): None
)
Base model
Zyphra/ZAYA1-reasoning-base