|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
""" |
|
|
Create a simple multi-turn dataset for testing |
|
|
""" |
|
|
|
|
|
import argparse |
|
|
import os |
|
|
|
|
|
import pandas as pd |
|
|
|
|
|
|
|
|
def main(): |
|
|
parser = argparse.ArgumentParser() |
|
|
parser.add_argument("--local_dir", default="~/data/multiturn") |
|
|
parser.add_argument("--hdfs_dir", default=None) |
|
|
args = parser.parse_args() |
|
|
|
|
|
|
|
|
conversations = [] |
|
|
|
|
|
|
|
|
conversations.append( |
|
|
{ |
|
|
"messages": [ |
|
|
{"role": "system", "content": "You are a helpful assistant."}, |
|
|
{"role": "user", "content": "What is the capital of France?"}, |
|
|
{"role": "assistant", "content": "The capital of France is Paris."}, |
|
|
{"role": "user", "content": "And what about Germany?"}, |
|
|
{"role": "assistant", "content": "The capital of Germany is Berlin."}, |
|
|
] |
|
|
} |
|
|
) |
|
|
|
|
|
|
|
|
conversations.append( |
|
|
{ |
|
|
"messages": [ |
|
|
{"role": "system", "content": "You are a helpful assistant."}, |
|
|
{"role": "user", "content": "Can you explain quantum computing?"}, |
|
|
{ |
|
|
"role": "assistant", |
|
|
"content": "Quantum computing is a type of computing that uses quantum-mechanical phenomena, such as superposition and entanglement, to perform operations on data.", |
|
|
}, |
|
|
{"role": "user", "content": "How is it different from classical computing?"}, |
|
|
{ |
|
|
"role": "assistant", |
|
|
"content": "Classical computing uses bits that are either 0 or 1, while quantum computing uses quantum bits or qubits that can exist in multiple states simultaneously due to superposition.", |
|
|
}, |
|
|
] |
|
|
} |
|
|
) |
|
|
|
|
|
|
|
|
conversations.append( |
|
|
{ |
|
|
"messages": [ |
|
|
{"role": "system", "content": "You are a helpful assistant."}, |
|
|
{"role": "user", "content": "Write a simple Python function to calculate factorial."}, |
|
|
{ |
|
|
"role": "assistant", |
|
|
"content": "```python\ndef factorial(n):\n if n == 0 or n == 1:\n return 1\n else:\n return n * factorial(n-1)\n```\n\nThis is a recursive function to calculate the factorial of a number.", |
|
|
}, |
|
|
{"role": "user", "content": "Can you make it iterative instead?"}, |
|
|
{ |
|
|
"role": "assistant", |
|
|
"content": "```python\ndef factorial(n):\n result = 1\n for i in range(1, n+1):\n result *= i\n return result\n```\n\nThis is an iterative version of the factorial function.", |
|
|
}, |
|
|
] |
|
|
} |
|
|
) |
|
|
|
|
|
|
|
|
train_data = conversations[:2] |
|
|
test_data = conversations[2:] |
|
|
|
|
|
|
|
|
local_dir = os.path.expanduser(args.local_dir) |
|
|
os.makedirs(local_dir, exist_ok=True) |
|
|
|
|
|
|
|
|
train_df = pd.DataFrame(train_data) |
|
|
test_df = pd.DataFrame(test_data) |
|
|
|
|
|
train_df.to_parquet(os.path.join(local_dir, "train.parquet")) |
|
|
test_df.to_parquet(os.path.join(local_dir, "test.parquet")) |
|
|
|
|
|
|
|
|
if args.hdfs_dir is not None: |
|
|
try: |
|
|
from verl.utils.hdfs_io import copy, makedirs |
|
|
|
|
|
makedirs(args.hdfs_dir) |
|
|
copy(src=local_dir, dst=args.hdfs_dir) |
|
|
except ImportError: |
|
|
print("Warning: HDFS support not available. Skipping HDFS copy.") |
|
|
|
|
|
|
|
|
print(f"Train dataset size: {len(train_df)}") |
|
|
print(f"Test dataset size: {len(test_df)}") |
|
|
print(f"Data saved to {local_dir}") |
|
|
|
|
|
|
|
|
if __name__ == "__main__": |
|
|
main() |
|
|
|