verl_subquestion / examples /data_preprocess /preprocess_search_r1_dataset.py
zswzswzsw's picture
Upload folder using huggingface_hub
66407c5 verified
# Copyright 2024 Bytedance Ltd. and/or its affiliates
# Copyright 2023-2024 SGLang Team
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import argparse
import logging
import os
import tempfile
import pandas as pd
from huggingface_hub import hf_hub_download
from huggingface_hub.utils import EntryNotFoundError
from verl.utils.hdfs_io import copy, makedirs
# Setup logging
logging.basicConfig(level=logging.INFO, format="%(asctime)s - %(levelname)s - %(message)s")
logger = logging.getLogger(__name__)
# Configuration constants
DEFAULT_SYSTEM_CONTENT = "You are a helpful and harmless assistant."
DEFAULT_USER_CONTENT_PREFIX = (
"Answer the given question. You must conduct reasoning inside <think> and </think> "
"first every time you get new information. After reasoning, if you find you lack "
"some knowledge, you can call a search engine by <tool_call> query </tool_call> "
"and it will return the top searched results between <tool_response> and "
"</tool_response>. You can search as many times as your want. If you find no "
"further external knowledge needed, you can directly provide the answer inside "
"<answer> and </answer>, without detailed illustrations. For example, "
"<answer> Beijing </answer>. Question: "
)
def process_single_row(row, current_split_name, row_index):
"""
Process a single row of data for SearchR1-like format.
Args:
row: DataFrame row containing the original data
current_split_name: Name of the current split (train/test)
row_index: Index of the row in the DataFrame
Returns:
pd.Series: Processed row data in the required format
"""
question = row.get("question", "")
# Build prompt structure
user_content = user_content_prefix.rstrip("\n") + question
prompt = [{"role": "system", "content": system_content}, {"role": "user", "content": user_content}]
# Extract ground truth from reward_model or fallback to golden_answers
reward_model_data = row.get("reward_model")
if isinstance(reward_model_data, dict) and "ground_truth" in reward_model_data:
ground_truth = reward_model_data.get("ground_truth")
else:
ground_truth = row.get("golden_answers", [])
# Process data source
data_source_tagged = "searchR1_" + str(row.get("data_source", ""))
# Build tools kwargs structure
tools_kwargs = {"search": {"create_kwargs": {"ground_truth": ground_truth, "question": question, "data_source": data_source_tagged}}}
# Build complete extra_info structure
extra_info = {
"index": row_index,
"need_tools_kwargs": True,
"question": question,
"split": current_split_name,
"tools_kwargs": tools_kwargs,
}
return pd.Series(
{
"data_source": data_source_tagged,
"prompt": prompt,
"ability": row.get("ability"),
"reward_model": reward_model_data,
"extra_info": extra_info,
"metadata": row.get("metadata"),
}
)
def main():
local_save_dir = os.path.expanduser(args.local_dir)
os.makedirs(local_save_dir, exist_ok=True)
processed_files = []
# Download and process files using temporary directory
with tempfile.TemporaryDirectory() as tmp_download_dir:
for split in ["train", "test"]:
parquet_filename = f"{split}.parquet"
logger.info(f"Processing {split} split...")
try:
# Download Parquet file from HuggingFace
logger.info(f"Downloading {parquet_filename} from {args.hf_repo_id}")
local_parquet_filepath = hf_hub_download(
repo_id=args.hf_repo_id,
filename=parquet_filename,
repo_type="dataset",
local_dir=tmp_download_dir,
local_dir_use_symlinks=False,
)
# Load and process Parquet file
df_raw = pd.read_parquet(local_parquet_filepath)
logger.info(f"Loaded {len(df_raw)} rows from {parquet_filename}")
def apply_process_row(row, split_name=split):
return process_single_row(row, current_split_name=split_name, row_index=row.name)
df_processed = df_raw.apply(apply_process_row, axis=1)
# Save processed DataFrame
output_file_path = os.path.join(local_save_dir, f"{split}.parquet")
df_processed.to_parquet(output_file_path, index=False)
logger.info(f"Saved {len(df_processed)} processed rows to {output_file_path}")
processed_files.append(output_file_path)
except EntryNotFoundError:
logger.warning(f"{parquet_filename} not found in repository {args.hf_repo_id}")
except Exception as e:
logger.error(f"Error processing {split} split: {e}")
if not processed_files:
logger.warning("No data was processed or saved")
return
logger.info(f"Successfully processed {len(processed_files)} files to {local_save_dir}")
# Copy to HDFS if specified
if args.hdfs_dir:
try:
makedirs(args.hdfs_dir)
copy(src=local_save_dir, dst=args.hdfs_dir)
logger.info(f"Successfully copied files to HDFS: {args.hdfs_dir}")
except Exception as e:
logger.error(f"Error copying files to HDFS: {e}")
if __name__ == "__main__":
parser = argparse.ArgumentParser(description="Download Search-R1 from HuggingFace, process, and save to Parquet.")
parser.add_argument("--hf_repo_id", default="PeterJinGo/nq_hotpotqa_train", help="HuggingFace dataset repository ID.")
parser.add_argument("--local_dir", default="~/data/searchR1_processed_direct", help="Local directory to save the processed Parquet files.")
parser.add_argument("--hdfs_dir", default=None, help="Optional HDFS directory to copy the Parquet files to.")
args = parser.parse_args()
# System and user content configuration
system_content = DEFAULT_SYSTEM_CONTENT
user_content_prefix = DEFAULT_USER_CONTENT_PREFIX
main()