EMahdi's picture
End of training
cf5a99b verified
metadata
library_name: transformers
language:
  - ar
license: mit
base_model: openai/whisper-large-v3-turbo
tags:
  - generated_from_trainer
datasets:
  - EMahdi/WhisperFinetune
metrics:
  - wer
model-index:
  - name: Whisper Large V3 Turbo Finetune Ar - EMahdi
    results:
      - task:
          name: Automatic Speech Recognition
          type: automatic-speech-recognition
        dataset:
          name: EMahdi/WhisperFinetune Sudanese Corpus
          type: EMahdi/WhisperFinetune
          args: 'config: sudanese_corpus, split: test'
        metrics:
          - name: Wer
            type: wer
            value: 42.80180761781795

Whisper Large V3 Turbo Finetune Ar - EMahdi

This model is a fine-tuned version of openai/whisper-large-v3-turbo on the EMahdi/WhisperFinetune Sudanese Corpus dataset. It achieves the following results on the evaluation set:

  • Loss: 0.8721
  • Wer: 42.8018

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 32
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • num_epochs: 10
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
1.2464 1.0 89 0.9025 71.2072
0.7343 2.0 178 0.7835 55.7779
0.5441 3.0 267 0.7463 56.3105
0.4076 4.0 356 0.7532 47.5468
0.325 5.0 445 0.7811 51.4526
0.2635 6.0 534 0.8050 62.1369
0.1866 7.0 623 0.8226 45.7715
0.1171 8.0 712 0.8406 45.4810
0.0679 9.0 801 0.8664 43.5119
0.0399 10.0 890 0.8721 42.8018

Framework versions

  • Transformers 4.45.0
  • Pytorch 2.5.1+cu121
  • Datasets 3.1.0
  • Tokenizers 0.20.3