name
string
module
string
type
string
Mathlib.Tactic.ITauto.Proof.orImpL.sizeOf_spec
Mathlib.Tactic.ITauto
βˆ€ (p : Mathlib.Tactic.ITauto.Proof), sizeOf p.orImpL = 1 + sizeOf p
Dense.eq_of_inner_right
Mathlib.Analysis.InnerProductSpace.Projection.Submodule
βˆ€ {π•œ : Type u_1} {E : Type u_2} [inst : RCLike π•œ] [inst_1 : NormedAddCommGroup E] [inst_2 : InnerProductSpace π•œ E] {K : Submodule π•œ E} {x y : E}, Dense ↑K β†’ (βˆ€ (v : β†₯K), inner π•œ (↑v) x = inner π•œ (↑v) y) β†’ x = y
FermatLastTheoremForThreeGen.Solution.toSolution'
Mathlib.NumberTheory.FLT.Three
{K : Type u_1} β†’ [inst : Field K] β†’ {ΞΆ : K} β†’ {hΞΆ : IsPrimitiveRoot ΞΆ 3} β†’ FermatLastTheoremForThreeGen.Solution hΞΆ β†’ FermatLastTheoremForThreeGen.Solution' hΞΆ
iteratedDerivWithin_add
Mathlib.Analysis.Calculus.IteratedDeriv.Lemmas
βˆ€ {π•œ : Type u_1} [inst : NontriviallyNormedField π•œ] {F : Type u_2} [inst_1 : NormedAddCommGroup F] [inst_2 : NormedSpace π•œ F] {n : β„•} {x : π•œ} {s : Set π•œ}, x ∈ s β†’ UniqueDiffOn π•œ s β†’ βˆ€ {f g : π•œ β†’ F}, ContDiffWithinAt π•œ (↑n) f s x β†’ ContDiffWithinAt π•œ (↑n) g s x β†’ iteratedDerivWithin n (f + g) s x = iteratedDerivWithin n f s x + iteratedDerivWithin n g s x
MeasureTheory.lintegral_def
Mathlib.MeasureTheory.Integral.Lebesgue.Basic
βˆ€ {Ξ± : Type u_4} {m : MeasurableSpace Ξ±} (ΞΌ : MeasureTheory.Measure Ξ±) (f : Ξ± β†’ ENNReal), MeasureTheory.lintegral ΞΌ f = ⨆ g, ⨆ (_ : ⇑g ≀ f), g.lintegral ΞΌ
Polynomial.Splits.X_pow
Mathlib.Algebra.Polynomial.Factors
βˆ€ {R : Type u_1} [inst : Semiring R] (n : β„•), (Polynomial.X ^ n).Splits
Lean.Compiler.LCNF.Phase.le_refl._simp_1
Lean.Compiler.LCNF.PassManager
βˆ€ (p : Lean.Compiler.LCNF.Phase), (p ≀ p) = True
ENNReal.continuousAt_const_mul
Mathlib.Topology.Instances.ENNReal.Lemmas
βˆ€ {a b : ENNReal}, a β‰  ⊀ ∨ b β‰  0 β†’ ContinuousAt (fun x => a * x) b
DirectSum.Decomposition.mk.noConfusion
Mathlib.Algebra.DirectSum.Decomposition
{ΞΉ : Type u_1} β†’ {M : Type u_3} β†’ {Οƒ : Type u_4} β†’ [inst : DecidableEq ΞΉ] β†’ [inst_1 : AddCommMonoid M] β†’ [inst_2 : SetLike Οƒ M] β†’ [inst_3 : AddSubmonoidClass Οƒ M] β†’ {β„³ : ΞΉ β†’ Οƒ} β†’ (P : Sort u) β†’ (decompose' : M β†’ DirectSum ΞΉ fun i => β†₯(β„³ i)) β†’ (left_inv : Function.LeftInverse (⇑(DirectSum.coeAddMonoidHom β„³)) decompose') β†’ (right_inv : Function.RightInverse (⇑(DirectSum.coeAddMonoidHom β„³)) decompose') β†’ (decompose'' : M β†’ DirectSum ΞΉ fun i => β†₯(β„³ i)) β†’ (left_inv' : Function.LeftInverse (⇑(DirectSum.coeAddMonoidHom β„³)) decompose'') β†’ (right_inv' : Function.RightInverse (⇑(DirectSum.coeAddMonoidHom β„³)) decompose'') β†’ { decompose' := decompose', left_inv := left_inv, right_inv := right_inv } = { decompose' := decompose'', left_inv := left_inv', right_inv := right_inv' } β†’ (decompose' = decompose'' β†’ P) β†’ P
intervalIntegral.FTCFilter.le_nhds
Mathlib.MeasureTheory.Integral.IntervalIntegral.FundThmCalculus
βˆ€ {a : outParam ℝ} (outer : Filter ℝ) {inner : outParam (Filter ℝ)} [self : intervalIntegral.FTCFilter a outer inner], inner ≀ nhds a
Mathlib.Meta.Positivity.evalNNRealSqrt
Mathlib.Data.Real.Sqrt
Mathlib.Meta.Positivity.PositivityExt
Submonoid.units._proof_2
Mathlib.Algebra.Group.Submonoid.Units
βˆ€ {M : Type u_1} [inst : Monoid M] (S : Submonoid M) {x : MΛ£}, x ∈ (Submonoid.comap (Units.coeHom M) S βŠ“ (Submonoid.comap (Units.coeHom M) S)⁻¹).carrier β†’ x⁻¹ ∈ ↑(Submonoid.comap (Units.coeHom M) S) ∧ x⁻¹ ∈ ↑(Submonoid.comap (Units.coeHom M) S)⁻¹
Order.isPredLimitRecOn_pred_of_not_isMin
Mathlib.Order.SuccPred.Limit
βˆ€ {Ξ± : Type u_1} {b : Ξ±} {motive : Ξ± β†’ Sort u_2} [inst : LinearOrder Ξ±] [inst_1 : PredOrder Ξ±] (isMax : (a : Ξ±) β†’ IsMax a β†’ motive a) (pred : (a : Ξ±) β†’ Β¬IsMin a β†’ motive (Order.pred a)) (isPredLimit : (a : Ξ±) β†’ Order.IsPredLimit a β†’ motive a) (hb : Β¬IsMin b), Order.isPredLimitRecOn (Order.pred b) isMax pred isPredLimit = pred b hb
CategoryTheory.ObjectProperty.isSeparating_unop_iff
Mathlib.CategoryTheory.Generator.Basic
βˆ€ {C : Type u₁} [inst : CategoryTheory.Category.{v₁, u₁} C] (P : CategoryTheory.ObjectProperty Cα΅’α΅–), P.unop.IsSeparating ↔ P.IsCoseparating
Std.DTreeMap.Internal.Impl.get?β‚˜_eq_getValueCast?
Std.Data.DTreeMap.Internal.WF.Lemmas
βˆ€ {Ξ± : Type u} {Ξ² : Ξ± β†’ Type v} [inst : Ord Ξ±] [inst_1 : Std.TransOrd Ξ±] [inst_2 : Std.LawfulEqOrd Ξ±] [inst_3 : BEq Ξ±] [inst_4 : Std.LawfulBEqOrd Ξ±] {k : Ξ±} {t : Std.DTreeMap.Internal.Impl Ξ± Ξ²}, t.Ordered β†’ t.get?β‚˜ k = Std.Internal.List.getValueCast? k t.toListModel
MeasureTheory.SignedMeasure.null_of_totalVariation_zero
Mathlib.MeasureTheory.VectorMeasure.Decomposition.Jordan
βˆ€ {Ξ± : Type u_1} [inst : MeasurableSpace Ξ±] (s : MeasureTheory.SignedMeasure Ξ±) {i : Set Ξ±}, s.totalVariation i = 0 β†’ ↑s i = 0
Module.Free.chooseBasis._proof_1
Mathlib.LinearAlgebra.FreeModule.Basic
βˆ€ (R : Type u_2) (M : Type u_1) [inst : Semiring R] [inst_1 : AddCommMonoid M] [inst_2 : Module R M] [inst_3 : Module.Free R M], Nonempty (Module.Basis (↑⋯.choose) R M)
Affine.Simplex.excenterWeights_compl
Mathlib.Geometry.Euclidean.Incenter
βˆ€ {V : Type u_1} {P : Type u_2} [inst : NormedAddCommGroup V] [inst_1 : InnerProductSpace ℝ V] [inst_2 : MetricSpace P] [inst_3 : NormedAddTorsor V P] {n : β„•} [inst_4 : NeZero n] (s : Affine.Simplex ℝ P n) (signs : Finset (Fin (n + 1))), s.excenterWeights signsᢜ = s.excenterWeights signs
_private.Mathlib.NumberTheory.SumFourSquares.0.Int.sq_add_sq_of_two_mul_sq_add_sq._simp_1_1
Mathlib.NumberTheory.SumFourSquares
βˆ€ {Ξ± : Type u_2} [inst : Semiring Ξ±] {a : Ξ±}, (2 ∣ a) = Even a
Representation.Coinvariants.hom_ext_iff
Mathlib.RepresentationTheory.Coinvariants
βˆ€ {k : Type u_1} {G : Type u_2} {V : Type u_3} {W : Type u_4} [inst : CommRing k] [inst_1 : Monoid G] [inst_2 : AddCommGroup V] [inst_3 : Module k V] [inst_4 : AddCommGroup W] [inst_5 : Module k W] {ρ : Representation k G V} {f g : ρ.Coinvariants β†’β‚—[k] W}, f = g ↔ f βˆ˜β‚— Representation.Coinvariants.mk ρ = g βˆ˜β‚— Representation.Coinvariants.mk ρ
ValuativeRel.IsRankLeOne.mk
Mathlib.RingTheory.Valuation.ValuativeRel.Basic
βˆ€ {R : Type u_1} [inst : CommRing R] [inst_1 : ValuativeRel R], Nonempty (ValuativeRel.RankLeOneStruct R) β†’ ValuativeRel.IsRankLeOne R
Function.Antiperiodic.funext'
Mathlib.Algebra.Ring.Periodic
βˆ€ {Ξ± : Type u_1} {Ξ² : Type u_2} {f : Ξ± β†’ Ξ²} {c : Ξ±} [inst : Add Ξ±] [inst_1 : InvolutiveNeg Ξ²], Function.Antiperiodic f c β†’ (fun x => -f (x + c)) = f
Array.getElem?_zip_eq_some
Init.Data.Array.Zip
βˆ€ {Ξ± : Type u_1} {Ξ² : Type u_2} {as : Array Ξ±} {bs : Array Ξ²} {z : Ξ± Γ— Ξ²} {i : β„•}, (as.zip bs)[i]? = some z ↔ as[i]? = some z.1 ∧ bs[i]? = some z.2
Std.TreeMap.Raw.maxKey!_insert
Std.Data.TreeMap.Raw.Lemmas
βˆ€ {Ξ± : Type u} {Ξ² : Type v} {cmp : Ξ± β†’ Ξ± β†’ Ordering} {t : Std.TreeMap.Raw Ξ± Ξ² cmp} [Std.TransCmp cmp] [inst : Inhabited Ξ±], t.WF β†’ βˆ€ {k : Ξ±} {v : Ξ²}, (t.insert k v).maxKey! = t.maxKey?.elim k fun k' => if (cmp k' k).isLE = true then k else k'
FirstOrder.Language.PartialEquiv.mk.injEq
Mathlib.ModelTheory.PartialEquiv
βˆ€ {L : FirstOrder.Language} {M : Type w} {N : Type w'} [inst : L.Structure M] [inst_1 : L.Structure N] (dom : L.Substructure M) (cod : L.Substructure N) (toEquiv : L.Equiv β†₯dom β†₯cod) (dom_1 : L.Substructure M) (cod_1 : L.Substructure N) (toEquiv_1 : L.Equiv β†₯dom_1 β†₯cod_1), ({ dom := dom, cod := cod, toEquiv := toEquiv } = { dom := dom_1, cod := cod_1, toEquiv := toEquiv_1 }) = (dom = dom_1 ∧ cod = cod_1 ∧ toEquiv ≍ toEquiv_1)
CategoryTheory.Functor.whiskeringRight._proof_1
Mathlib.CategoryTheory.Whiskering
βˆ€ (C : Type u_3) [inst : CategoryTheory.Category.{u_1, u_3} C] (D : Type u_4) [inst_1 : CategoryTheory.Category.{u_2, u_4} D] (E : Type u_6) [inst_2 : CategoryTheory.Category.{u_5, u_6} E] (H : CategoryTheory.Functor D E) (X : CategoryTheory.Functor C D), CategoryTheory.Functor.whiskerRight (CategoryTheory.CategoryStruct.id X) H = CategoryTheory.CategoryStruct.id (X.comp H)
Std.TreeMap.keys.eq_1
Std.Data.TreeSet.Iterator
βˆ€ {Ξ± : Type u} {Ξ² : Type v} {cmp : Ξ± β†’ Ξ± β†’ Ordering} (t : Std.TreeMap Ξ± Ξ² cmp), t.keys = t.inner.keys
ProbabilityTheory.iIndepFun.indepFun_finset_sum_of_not_memβ‚€
Mathlib.Probability.Independence.Basic
βˆ€ {Ξ© : Type u_1} {ΞΉ : Type u_2} {_mΞ© : MeasurableSpace Ξ©} {ΞΌ : MeasureTheory.Measure Ξ©} {Ξ² : Type u_10} {m : MeasurableSpace Ξ²} [inst : AddCommMonoid Ξ²] [MeasurableAddβ‚‚ Ξ²] {f : ΞΉ β†’ Ξ© β†’ Ξ²}, ProbabilityTheory.iIndepFun f ΞΌ β†’ (βˆ€ (i : ΞΉ), AEMeasurable (f i) ΞΌ) β†’ βˆ€ {s : Finset ΞΉ} {i : ΞΉ}, i βˆ‰ s β†’ ProbabilityTheory.IndepFun (βˆ‘ j ∈ s, f j) (f i) ΞΌ
List.unattach_append
Init.Data.List.Attach
βˆ€ {Ξ± : Type u_1} {p : Ξ± β†’ Prop} {l₁ lβ‚‚ : List { x // p x }}, (l₁ ++ lβ‚‚).unattach = l₁.unattach ++ lβ‚‚.unattach
TopologicalSpace.Opens.coe_eq_univ._simp_1
Mathlib.Topology.Sets.Opens
βˆ€ {Ξ± : Type u_2} [inst : TopologicalSpace Ξ±] {U : TopologicalSpace.Opens Ξ±}, (↑U = Set.univ) = (U = ⊀)
AddMonoidAlgebra.sup_support_list_prod_le
Mathlib.Algebra.MonoidAlgebra.Degree
βˆ€ {R : Type u_1} {A : Type u_3} {B : Type u_5} [inst : SemilatticeSup B] [inst_1 : OrderBot B] [inst_2 : Semiring R] [inst_3 : AddMonoid A] [inst_4 : AddMonoid B] [AddLeftMono B] [AddRightMono B] {degb : A β†’ B}, degb 0 ≀ 0 β†’ (βˆ€ (a b : A), degb (a + b) ≀ degb a + degb b) β†’ βˆ€ (l : List (AddMonoidAlgebra R A)), l.prod.support.sup degb ≀ (List.map (fun f => f.support.sup degb) l).sum
Primrec.fst
Mathlib.Computability.Primrec
βˆ€ {Ξ± : Type u_2} {Ξ² : Type u_3} [inst : Primcodable Ξ±] [inst_1 : Primcodable Ξ²], Primrec Prod.fst
_private.Mathlib.Data.List.InsertIdx.0.List.take_eraseIdx_eq_take_of_le._proof_1_1
Mathlib.Data.List.InsertIdx
βˆ€ {Ξ± : Type u_1} (l : List Ξ±) (i j : β„•), i ≀ j β†’ (List.take i (l.eraseIdx j)).length = (List.take i l).length
Mathlib.Linter.linter.upstreamableDecl.private
Mathlib.Tactic.Linter.UpstreamableDecl
Lean.Option Bool
QuadraticMap.proj_apply
Mathlib.LinearAlgebra.QuadraticForm.Basic
βˆ€ {R : Type u_3} {A : Type u_7} [inst : CommSemiring R] [inst_1 : NonUnitalNonAssocSemiring A] [inst_2 : Module R A] [inst_3 : SMulCommClass R A A] [inst_4 : IsScalarTower R A A] {n : Type u_9} (i j : n) (x : n β†’ A), (QuadraticMap.proj i j) x = x i * x j
UInt8.xor_right_inj
Init.Data.UInt.Bitwise
βˆ€ {a b : UInt8} (c : UInt8), c ^^^ a = c ^^^ b ↔ a = b
_private.Lean.Meta.Tactic.Grind.AC.Seq.0.Lean.Grind.AC.instInhabitedStartsWithResult
Lean.Meta.Tactic.Grind.AC.Seq
Inhabited Lean.Grind.AC.StartsWithResult✝
AbsoluteValue.casesOn
Mathlib.Algebra.Order.AbsoluteValue.Basic
{R : Type u_5} β†’ {S : Type u_6} β†’ [inst : Semiring R] β†’ [inst_1 : Semiring S] β†’ [inst_2 : PartialOrder S] β†’ {motive : AbsoluteValue R S β†’ Sort u} β†’ (t : AbsoluteValue R S) β†’ ((toMulHom : R β†’β‚™* S) β†’ (nonneg' : βˆ€ (x : R), 0 ≀ toMulHom.toFun x) β†’ (eq_zero' : βˆ€ (x : R), toMulHom.toFun x = 0 ↔ x = 0) β†’ (add_le' : βˆ€ (x y : R), toMulHom.toFun (x + y) ≀ toMulHom.toFun x + toMulHom.toFun y) β†’ motive { toMulHom := toMulHom, nonneg' := nonneg', eq_zero' := eq_zero', add_le' := add_le' }) β†’ motive t
Aesop.GoalId.mk
Aesop.Tree.Data
β„• β†’ Aesop.GoalId
Lean.mkPropEq
Lean.Expr
Lean.Expr β†’ Lean.Expr β†’ Lean.Expr
Lean.Elab.Term.elabWaitIfContainsMVar._regBuiltin.Lean.Elab.Term.elabWaitIfContainsMVar_1
Lean.Elab.BuiltinTerm
IO Unit
CochainComplex.HomComplex.Ξ΄_comp_zero_cochain
Mathlib.Algebra.Homology.HomotopyCategory.HomComplex
βˆ€ {C : Type u} [inst : CategoryTheory.Category.{v, u} C] [inst_1 : CategoryTheory.Preadditive C] {F G K : CochainComplex C β„€} {n₁ : β„€} (z₁ : CochainComplex.HomComplex.Cochain F G n₁) (zβ‚‚ : CochainComplex.HomComplex.Cochain G K 0) (m₁ : β„€) (h₁ : n₁ + 1 = m₁), CochainComplex.HomComplex.Ξ΄ n₁ m₁ (z₁.comp zβ‚‚ β‹―) = z₁.comp (CochainComplex.HomComplex.Ξ΄ 0 1 zβ‚‚) h₁ + (CochainComplex.HomComplex.Ξ΄ n₁ m₁ z₁).comp zβ‚‚ β‹―
CompTriple.instIsIdId
Mathlib.Logic.Function.CompTypeclasses
βˆ€ {M : Type u_1}, CompTriple.IsId id
SimpleGraph.Walk.support_concat
Mathlib.Combinatorics.SimpleGraph.Walks.Operations
βˆ€ {V : Type u} {G : SimpleGraph V} {u v w : V} (p : G.Walk u v) (h : G.Adj v w), (p.concat h).support = p.support.concat w
left_lt_sup._simp_3
Mathlib.Order.Lattice
βˆ€ {Ξ± : Type u} [inst : SemilatticeSup Ξ±] {a b : Ξ±}, (a < a βŠ” b) = Β¬b ≀ a
CategoryTheory.Limits.pullbackConeOfRightIso_Ο€_app_none
Mathlib.CategoryTheory.Limits.Shapes.Pullback.Iso
βˆ€ {C : Type u} [inst : CategoryTheory.Category.{v, u} C] {X Y Z : C} (f : X ⟢ Z) (g : Y ⟢ Z) [inst_1 : CategoryTheory.IsIso g], (CategoryTheory.Limits.pullbackConeOfRightIso f g).Ο€.app none = f
List.Vector.snoc.eq_1
Mathlib.Data.Vector.Snoc
βˆ€ {Ξ± : Type u_1} {n : β„•} (xs : List.Vector Ξ± n) (x : Ξ±), xs.snoc x = xs ++ x ::α΅₯ List.Vector.nil
Finsupp.equivMapDomain.eq_1
Mathlib.Data.Finsupp.Basic
βˆ€ {Ξ± : Type u_1} {Ξ² : Type u_2} {M : Type u_5} [inst : Zero M] (f : Ξ± ≃ Ξ²) (l : Ξ± β†’β‚€ M), Finsupp.equivMapDomain f l = { support := Finset.map f.toEmbedding l.support, toFun := fun a => l (f.symm a), mem_support_toFun := β‹― }
AlgHom.ext
Mathlib.Algebra.Algebra.Hom
βˆ€ {R : Type u} {A : Type v} {B : Type w} [inst : CommSemiring R] [inst_1 : Semiring A] [inst_2 : Semiring B] [inst_3 : Algebra R A] [inst_4 : Algebra R B] {φ₁ Ο†β‚‚ : A →ₐ[R] B}, (βˆ€ (x : A), φ₁ x = Ο†β‚‚ x) β†’ φ₁ = Ο†β‚‚
Associated.instIsTrans
Mathlib.Algebra.GroupWithZero.Associated
βˆ€ {M : Type u_1} [inst : Monoid M], IsTrans M Associated
IsFiniteLength.brecOn
Mathlib.RingTheory.FiniteLength
βˆ€ {R : Type u_1} [inst : Ring R] {motive : (M : Type u_2) β†’ [inst_1 : AddCommGroup M] β†’ [inst_2 : Module R M] β†’ IsFiniteLength R M β†’ Prop} {M : Type u_2} {inst_1 : AddCommGroup M} {inst_2 : Module R M} (t : IsFiniteLength R M), (βˆ€ (M : Type u_2) [inst_3 : AddCommGroup M] [inst_4 : Module R M] (t : IsFiniteLength R M), IsFiniteLength.below t β†’ motive M t) β†’ motive M t
Int.ModEq.of_mul_right
Mathlib.Data.Int.ModEq
βˆ€ {n a b : β„€} (m : β„€), a ≑ b [ZMOD n * m] β†’ a ≑ b [ZMOD n]
Std.Notify.wait
Std.Sync.Notify
Std.Notify β†’ IO (Std.Internal.IO.Async.AsyncTask Unit)
_private.Mathlib.CategoryTheory.Bicategory.CatEnriched.0.CategoryTheory.CatEnriched.hComp_id._simp_1_1
Mathlib.CategoryTheory.Bicategory.CatEnriched
βˆ€ {Ξ± : Sort u_1} (a b : Ξ±), (a = b) = (a ≍ b)
Matrix.mulVec_surjective_iff_isUnit
Mathlib.LinearAlgebra.Matrix.NonsingularInverse
βˆ€ {m : Type u} [inst : DecidableEq m] {R : Type u_2} [inst_1 : CommRing R] [inst_2 : Fintype m] {A : Matrix m m R}, Function.Surjective A.mulVec ↔ IsUnit A
_private.Mathlib.Data.Nat.Factorization.PrimePow.0.isPrimePow_iff_card_primeFactors_eq_one._simp_1_2
Mathlib.Data.Nat.Factorization.PrimePow
βˆ€ (n : β„•), n.primeFactors = n.factorization.support
exterior_eq_iff_isOpen
Mathlib.Topology.AlexandrovDiscrete
βˆ€ {Ξ± : Type u_3} [inst : TopologicalSpace Ξ±] [AlexandrovDiscrete Ξ±] {s : Set Ξ±}, nhdsKer s = s ↔ IsOpen s
StrictConvexSpace.of_norm_add_ne_two
Mathlib.Analysis.Convex.StrictConvexSpace
βˆ€ {E : Type u_2} [inst : NormedAddCommGroup E] [inst_1 : NormedSpace ℝ E], (βˆ€ ⦃x y : E⦄, β€–xβ€– = 1 β†’ β€–yβ€– = 1 β†’ x β‰  y β†’ β€–x + yβ€– β‰  2) β†’ StrictConvexSpace ℝ E
CompHausLike.LocallyConstant.adjunction
Mathlib.Condensed.Discrete.LocallyConstant
(P : TopCat β†’ Prop) β†’ [βˆ€ (S : CompHausLike P) (p : ↑S.toTop β†’ Prop), CompHausLike.HasProp P (Subtype p)] β†’ [inst : CompHausLike.HasProp P PUnit.{u + 1}] β†’ [inst_1 : CompHausLike.HasExplicitFiniteCoproducts P] β†’ [inst_2 : CompHausLike.HasExplicitPullbacks P] β†’ (hs : βˆ€ ⦃X Y : CompHausLike P⦄ (f : X ⟢ Y), CategoryTheory.EffectiveEpi f β†’ Function.Surjective ⇑(CategoryTheory.ConcreteCategory.hom f)) β†’ [CompHausLike.HasExplicitFiniteCoproducts P] β†’ CompHausLike.LocallyConstant.functor P hs ⊣ (CategoryTheory.sheafSections (CategoryTheory.coherentTopology (CompHausLike P)) (Type (max u w))).obj (Opposite.op (CompHausLike.of P PUnit.{u + 1}))
_private.Mathlib.RingTheory.Polynomial.UniversalFactorizationRing.0.MvPolynomial.pderiv_inr_universalFactorizationMap_X._proof_1_9
Mathlib.RingTheory.Polynomial.UniversalFactorizationRing
βˆ€ (n k : β„•) (i : Fin k) (j : Fin n), ↑i ≀ ↑j β†’ βˆ€ (a b : β„•), a + b = ↑j β†’ Β¬(a = ↑j - ↑i ∧ b = ↑i) β†’ b < k β†’ b β‰  ↑i
Int.subNatNat_sub
Init.Data.Int.Lemmas
βˆ€ {n m : β„•}, n ≀ m β†’ βˆ€ (k : β„•), Int.subNatNat (m - n) k = Int.subNatNat m (k + n)
Manifold.Β«_aux_Mathlib_Geometry_Manifold_Notation___elabRules_Manifold_termHasMFDerivAt%_______1Β»
Mathlib.Geometry.Manifold.Notation
Lean.Elab.Term.TermElab
Ordinal.veblen_left_monotone
Mathlib.SetTheory.Ordinal.Veblen
βˆ€ (o : Ordinal.{u_1}), Monotone fun x => Ordinal.veblen x o
Ideal.primeHeight_eq_ringKrullDim_iff
Mathlib.RingTheory.Ideal.Height
βˆ€ {R : Type u_1} [inst : CommRing R] [FiniteRingKrullDim R] [inst_2 : IsLocalRing R] {I : Ideal R} [inst_3 : I.IsPrime], ↑I.primeHeight = ringKrullDim R ↔ I = IsLocalRing.maximalIdeal R
Aesop.EqualUpToIdsM.Context._sizeOf_1
Aesop.Util.EqualUpToIds
Aesop.EqualUpToIdsM.Context β†’ β„•
CategoryTheory.Lax.LaxTrans.StrongCore.mk.inj
Mathlib.CategoryTheory.Bicategory.NaturalTransformation.Lax
βˆ€ {B : Type u₁} {inst : CategoryTheory.Bicategory B} {C : Type uβ‚‚} {inst_1 : CategoryTheory.Bicategory C} {F G : CategoryTheory.LaxFunctor B C} {Ξ· : F ⟢ G} {naturality : {a b : B} β†’ (f : a ⟢ b) β†’ CategoryTheory.CategoryStruct.comp (Ξ·.app a) (G.map f) β‰… CategoryTheory.CategoryStruct.comp (F.map f) (Ξ·.app b)} {naturality_hom : autoParam (βˆ€ {a b : B} (f : a ⟢ b), (naturality f).hom = Ξ·.naturality f) CategoryTheory.Lax.LaxTrans.StrongCore.naturality_hom._autoParam} {naturality_1 : {a b : B} β†’ (f : a ⟢ b) β†’ CategoryTheory.CategoryStruct.comp (Ξ·.app a) (G.map f) β‰… CategoryTheory.CategoryStruct.comp (F.map f) (Ξ·.app b)} {naturality_hom_1 : autoParam (βˆ€ {a b : B} (f : a ⟢ b), (naturality_1 f).hom = Ξ·.naturality f) CategoryTheory.Lax.LaxTrans.StrongCore.naturality_hom._autoParam}, { naturality := naturality, naturality_hom := naturality_hom } = { naturality := naturality_1, naturality_hom := naturality_hom_1 } β†’ naturality = naturality_1
_private.Batteries.Data.List.Lemmas.0.List.getElem_idxsOf_lt._proof_1_11
Batteries.Data.List.Lemmas
βˆ€ {Ξ± : Type u_1} {i : β„•} {xs : List Ξ±} {x : Ξ±} [inst : BEq Ξ±], i + 1 ≀ (List.filter (fun x_1 => x_1 == x) xs).length β†’ i < (List.filter (fun x_1 => x_1 == x) xs).length
AddConstMap.instMonoid
Mathlib.Algebra.AddConstMap.Basic
{G : Type u_1} β†’ [inst : Add G] β†’ {a : G} β†’ Monoid (AddConstMap G G a a)
_private.Mathlib.Order.Filter.Basic.0.Filter.frequently_principal._simp_1_2
Mathlib.Order.Filter.Basic
βˆ€ {Ξ± : Sort u_1} {p : Ξ± β†’ Prop}, (Β¬βˆ€ (x : Ξ±), p x) = βˆƒ x, Β¬p x
AlternatingMap.mkContinuousAlternating._proof_6
Mathlib.Analysis.Normed.Module.Alternating.Basic
βˆ€ {π•œ : Type u_6} {E : Type u_1} {F : Type u_3} {G : Type u_4} {ΞΉ : Type u_2} [inst : NontriviallyNormedField π•œ] [inst_1 : SeminormedAddCommGroup E] [inst_2 : NormedSpace π•œ E] [inst_3 : SeminormedAddCommGroup F] [inst_4 : NormedSpace π•œ F] [inst_5 : SeminormedAddCommGroup G] [inst_6 : NormedSpace π•œ G] [inst_7 : Fintype ΞΉ] {ΞΉ' : Type u_5} [inst_8 : Fintype ΞΉ'] (f : E [β‹€^ΞΉ]β†’β‚—[π•œ] F [β‹€^ΞΉ']β†’β‚—[π•œ] G) (C : ℝ) (H : βˆ€ (m₁ : ΞΉ β†’ E) (mβ‚‚ : ΞΉ' β†’ F), β€–(f m₁) mβ‚‚β€– ≀ (C * ∏ i, β€–m₁ iβ€–) * ∏ i, β€–mβ‚‚ iβ€–) (v : ΞΉ β†’ E) (i j : ΞΉ), v i = v j β†’ i β‰  j β†’ (f v).mkContinuous (C * ∏ i, β€–v iβ€–) β‹― = 0
_private.Lean.Elab.Tactic.Induction.0.Lean.Elab.Tactic.ElimApp.evalAlts.applyAltStx
Lean.Elab.Tactic.Induction
Lean.Meta.ElimInfo β†’ Lean.Syntax β†’ β„• β†’ Array Lean.FVarId β†’ Array Lean.FVarId β†’ Array (Lean.Ident Γ— Lean.FVarId) β†’ Array (Lean.Language.SnapshotBundle Lean.Elab.Tactic.TacticParsedSnapshot) β†’ Array Lean.Syntax β†’ β„• β†’ Lean.Syntax β†’ Lean.Elab.Tactic.ElimApp.Alt β†’ Lean.Elab.Tactic.TacticM PUnit.{1}
_private.Init.Data.Iterators.Lemmas.Combinators.Monadic.FilterMap.0.Std.Iterators.IterM.step_mapM.match_1_1
Init.Data.Iterators.Lemmas.Combinators.Monadic.FilterMap
βˆ€ {Ξ± Ξ² : Type u_1} {m : Type u_1 β†’ Type u_2} {n : Type u_1 β†’ Type u_3} [inst : Std.Iterators.Iterator Ξ± m Ξ²] {it : Std.IterM m Ξ²} {Ξ³ : Type u_1} {f : Ξ² β†’ n Ξ³} [inst_1 : Monad n] [inst_2 : MonadLiftT m n] (motive : (Std.Iterators.IterM.mapM f it).internalState.inner.Step β†’ Prop) (x : (Std.Iterators.IterM.mapM f it).internalState.inner.Step), (βˆ€ (it' : Std.IterM m Ξ²) (out : Ξ²) (h : (Std.Iterators.IterM.mapM f it).internalState.inner.IsPlausibleStep (Std.Iterators.IterStep.yield it' out)), motive ⟨Std.Iterators.IterStep.yield it' out, h⟩) β†’ (βˆ€ (it' : Std.IterM m Ξ²) (h : (Std.Iterators.IterM.mapM f it).internalState.inner.IsPlausibleStep (Std.Iterators.IterStep.skip it')), motive ⟨Std.Iterators.IterStep.skip it', h⟩) β†’ (βˆ€ (h : (Std.Iterators.IterM.mapM f it).internalState.inner.IsPlausibleStep Std.Iterators.IterStep.done), motive ⟨Std.Iterators.IterStep.done, h⟩) β†’ motive x
Finset.compls_inter
Mathlib.Data.Finset.Sups
βˆ€ {Ξ± : Type u_2} [inst : BooleanAlgebra Ξ±] [inst_1 : DecidableEq Ξ±] (s t : Finset Ξ±), (s ∩ t).compls = s.compls ∩ t.compls
_private.Mathlib.Analysis.SpecialFunctions.ContinuousFunctionalCalculus.Rpow.IntegralRepresentation.0.CFC.exists_measure_nnrpow_eq_integral_cfcβ‚™_rpowIntegrand₀₁._proof_1_6
Mathlib.Analysis.SpecialFunctions.ContinuousFunctionalCalculus.Rpow.IntegralRepresentation
βˆ€ (A : Type u_1) [inst : NonUnitalNormedRing A] [inst_1 : NormedSpace ℝ A] [inst_2 : PartialOrder A] [NonnegSpectrumClass ℝ A] {p : NNReal} (ΞΌ : MeasureTheory.Measure ℝ), (βˆ€ x ∈ Set.Ici 0, MeasureTheory.IntegrableOn (fun t => ((fun a => ↑a) p).rpowIntegrand₀₁ t x) (Set.Ioi 0) ΞΌ ∧ x ^ (fun a => ↑a) p = ∫ (t : ℝ) in Set.Ioi 0, ((fun a => ↑a) p).rpowIntegrand₀₁ t x βˆ‚ΞΌ) β†’ βˆ€ (a : A), 0 ≀ a β†’ Nontrivial A β†’ 0 < ↑p β†’ 0 ≀ sSup (quasispectrum ℝ a) β†’ ContinuousOn (Function.uncurry fun t => (↑p).rpowIntegrand₀₁ t) (Set.Ioi 0 Γ—Λ’ quasispectrum ℝ a) β†’ (βˆ€α΅ (t : ℝ) βˆ‚ΞΌ.restrict (Set.Ioi 0), βˆ€ z ∈ quasispectrum ℝ a, β€–(fun t => (↑p).rpowIntegrand₀₁ t) t zβ€– ≀ (fun t => β€–(fun t => (↑p).rpowIntegrand₀₁ t) t (sSup (quasispectrum ℝ a))β€–) t) β†’ MeasureTheory.HasFiniteIntegral (fun t => β€–(fun t => (↑p).rpowIntegrand₀₁ t) t (sSup (quasispectrum ℝ a))β€–) (ΞΌ.restrict (Set.Ioi 0)) β†’ (βˆ€α΅ (x : ℝ) βˆ‚ΞΌ.restrict (Set.Ioi 0), (↑p).rpowIntegrand₀₁ x 0 = 0) β†’ βˆ€ r ∈ quasispectrum ℝ a, r ∈ Set.Ici 0
add_neg_lt_iff_lt_add
Mathlib.Algebra.Order.Group.Unbundled.Basic
βˆ€ {Ξ± : Type u} [inst : AddGroup Ξ±] [inst_1 : LT Ξ±] [AddRightStrictMono Ξ±] {a b c : Ξ±}, a + -b < c ↔ a < c + b
instHasColimitsCommAlgCat
Mathlib.Algebra.Category.CommAlgCat.Basic
βˆ€ {R : Type u} [inst : CommRing R], CategoryTheory.Limits.HasColimits (CommAlgCat R)
BoundedLatticeHom.toInfTopHom._proof_1
Mathlib.Order.Hom.BoundedLattice
βˆ€ {Ξ± : Type u_2} {Ξ² : Type u_1} [inst : Lattice Ξ±] [inst_1 : Lattice Ξ²] [inst_2 : BoundedOrder Ξ±] [inst_3 : BoundedOrder Ξ²] (f : BoundedLatticeHom Ξ± Ξ²) (a b : Ξ±), f.toFun (a βŠ“ b) = f.toFun a βŠ“ f.toFun b
BitVec.toInt_not
Init.Data.BitVec.Lemmas
βˆ€ {w : β„•} {x : BitVec w}, (~~~x).toInt = (2 ^ w - 1 - ↑x.toNat).bmod (2 ^ w)
CategoryTheory.MorphismProperty.colimitsOfShape_discrete_le_llp_rlp
Mathlib.CategoryTheory.MorphismProperty.LiftingProperty
βˆ€ {C : Type u} [inst : CategoryTheory.Category.{v, u} C] (T : CategoryTheory.MorphismProperty C) (J : Type w), T.colimitsOfShape (CategoryTheory.Discrete J) ≀ T.rlp.llp
_private.Lean.Elab.Deriving.Nonempty.0.Lean.Elab.Deriving.initFn._@.Lean.Elab.Deriving.Nonempty.1889502729._hygCtx._hyg.2
Lean.Elab.Deriving.Nonempty
IO Unit
String.toList.eq_1
Init.Data.String.Basic
βˆ€ (s : String), s.toList = (String.Internal.toArray s).toList
SchwartzMap.evalCLM._proof_3
Mathlib.Analysis.Distribution.SchwartzSpace
βˆ€ {π•œ : Type u_1} {F : Type u_2} [inst : NormedAddCommGroup F] [inst_1 : NormedField π•œ] [inst_2 : NormedSpace π•œ F], ContinuousConstSMul π•œ F
CoxeterMatrix.ext
Mathlib.GroupTheory.Coxeter.Matrix
βˆ€ {B : Type u_1} {x y : CoxeterMatrix B}, x.M = y.M β†’ x = y
Invertible.mulRight
Mathlib.Algebra.Group.Invertible.Basic
{Ξ± : Type u} β†’ [inst : Monoid Ξ±] β†’ (a : Ξ±) β†’ {b : Ξ±} β†’ Invertible b β†’ Invertible a ≃ Invertible (a * b)
Multiset.right_notMem_Ioo
Mathlib.Order.Interval.Multiset
βˆ€ {Ξ± : Type u_1} [inst : Preorder Ξ±] [inst_1 : LocallyFiniteOrder Ξ±] {a b : Ξ±}, b βˆ‰ Multiset.Ioo a b
_private.Lean.Server.FileWorker.SetupFile.0.Lean.Server.FileWorker.runLakeSetupFile._sparseCasesOn_1
Lean.Server.FileWorker.SetupFile
{motive : Lean.Lsp.DependencyBuildMode β†’ Sort u} β†’ (t : Lean.Lsp.DependencyBuildMode) β†’ motive Lean.Lsp.DependencyBuildMode.never β†’ (t.ctorIdx β‰  2 β†’ motive t) β†’ motive t
WeierstrassCurve.coe_variableChange_Ξ”'
Mathlib.AlgebraicGeometry.EllipticCurve.VariableChange
βˆ€ {R : Type u} [inst : CommRing R] (W : WeierstrassCurve R) (C : WeierstrassCurve.VariableChange R) [inst_1 : W.IsElliptic], ↑(C β€’ W).Ξ”' = ↑C.u⁻¹ ^ 12 * ↑W.Ξ”'
Std.Tactic.BVDecide.LRAT.Internal.DefaultFormula.clearRupUnits
Std.Tactic.BVDecide.LRAT.Internal.Formula.Implementation
{n : β„•} β†’ Std.Tactic.BVDecide.LRAT.Internal.DefaultFormula n β†’ Std.Tactic.BVDecide.LRAT.Internal.DefaultFormula n
instDecidableEqZNum.decEq._proof_10
Mathlib.Data.Num.Basic
βˆ€ (a b : PosNum), Β¬a = b β†’ ZNum.neg a = ZNum.neg b β†’ False
AbstractCompletion.closure_range
Mathlib.Topology.UniformSpace.AbstractCompletion
βˆ€ {Ξ± : Type uΞ±} [inst : UniformSpace Ξ±] (pkg : AbstractCompletion.{vΞ±, uΞ±} Ξ±), closure (Set.range pkg.coe) = Set.univ
Lean.KVMap.entries
Lean.Data.KVMap
Lean.KVMap β†’ List (Lean.Name Γ— Lean.DataValue)
ULift.leftCancelMonoid.eq_1
Mathlib.Algebra.Group.ULift
βˆ€ {Ξ± : Type u} [inst : LeftCancelMonoid Ξ±], ULift.leftCancelMonoid = Function.Injective.leftCancelMonoid ⇑Equiv.ulift β‹― β‹― β‹― β‹―
Aesop.LocalRuleSet.simprocsArray
Aesop.RuleSet
Aesop.LocalRuleSet β†’ Array (Lean.Name Γ— Lean.Meta.Simprocs)
isTotallyDisconnected_iff_lt
Mathlib.Topology.Order.IntermediateValue
βˆ€ {Ξ± : Type u} [inst : ConditionallyCompleteLinearOrder Ξ±] [inst_1 : TopologicalSpace Ξ±] [OrderTopology Ξ±] [DenselyOrdered Ξ±] {s : Set Ξ±}, IsTotallyDisconnected s ↔ βˆ€ x ∈ s, βˆ€ y ∈ s, x < y β†’ βˆƒ z βˆ‰ s, z ∈ Set.Ioo x y
LieModule.chainTop
Mathlib.Algebra.Lie.Weights.Chain
{R : Type u_1} β†’ {L : Type u_2} β†’ [inst : CommRing R] β†’ [inst_1 : LieRing L] β†’ [inst_2 : LieAlgebra R L] β†’ {M : Type u_3} β†’ [inst_3 : AddCommGroup M] β†’ [inst_4 : Module R M] β†’ [inst_5 : LieRingModule L M] β†’ [inst_6 : LieModule R L M] β†’ [inst_7 : LieRing.IsNilpotent L] β†’ [IsAddTorsionFree R] β†’ [NoZeroSMulDivisors R M] β†’ [IsNoetherian R M] β†’ (L β†’ R) β†’ LieModule.Weight R L M β†’ LieModule.Weight R L M
_private.Aesop.RPINF.0.Aesop.rpinfRaw.go
Aesop.RPINF
Lean.Expr β†’ Aesop.BaseM Lean.Expr
_private.Mathlib.Analysis.Normed.Module.Alternating.Uncurry.Fin.0.ContinuousAlternatingMap.alternatizeUncurryFinCLM.aux._proof_10
Mathlib.Analysis.Normed.Module.Alternating.Uncurry.Fin
βˆ€ {π•œ : Type u_1} [inst : NontriviallyNormedField π•œ], RingHomCompTriple (RingHom.id π•œ) (RingHom.id π•œ) (RingHom.id π•œ)
groupHomology.chains₁ToCoinvariantsKer
Mathlib.RepresentationTheory.Homological.GroupHomology.LowDegree
{k G : Type u} β†’ [inst : CommRing k] β†’ [inst_1 : Group G] β†’ (A : Rep k G) β†’ ModuleCat.of k (G β†’β‚€ ↑A.V) ⟢ ModuleCat.of k β†₯(Representation.Coinvariants.ker A.ρ)
FreeSimplexQuiver.homRel.Ξ΄_comp_Ξ΄
Mathlib.AlgebraicTopology.SimplexCategory.GeneratorsRelations.Basic
βˆ€ {n : β„•} {i j : Fin (n + 2)}, i ≀ j β†’ FreeSimplexQuiver.homRel (CategoryTheory.CategoryStruct.comp ((CategoryTheory.Paths.of FreeSimplexQuiver).map (FreeSimplexQuiver.Ξ΄ i)) ((CategoryTheory.Paths.of FreeSimplexQuiver).map (FreeSimplexQuiver.Ξ΄ j.succ))) (CategoryTheory.CategoryStruct.comp ((CategoryTheory.Paths.of FreeSimplexQuiver).map (FreeSimplexQuiver.Ξ΄ j)) ((CategoryTheory.Paths.of FreeSimplexQuiver).map (FreeSimplexQuiver.Ξ΄ i.castSucc)))
CategoryTheory.HasLiftingProperty.transfiniteComposition.SqStruct.wβ‚‚
Mathlib.CategoryTheory.SmallObject.TransfiniteCompositionLifting
βˆ€ {C : Type u} [inst : CategoryTheory.Category.{v, u} C] {J : Type w} [inst_1 : LinearOrder J] [inst_2 : OrderBot J] {F : CategoryTheory.Functor J C} {c : CategoryTheory.Limits.Cocone F} {X Y : C} {p : X ⟢ Y} {f : F.obj βŠ₯ ⟢ X} {g : c.pt ⟢ Y} {j : J} (self : CategoryTheory.HasLiftingProperty.transfiniteComposition.SqStruct c p f g j), CategoryTheory.CategoryStruct.comp self.f' p = CategoryTheory.CategoryStruct.comp (c.ΞΉ.app j) g