Agnuxo's picture
Upload README.md with huggingface_hub
d3d66a9 verified
metadata
license: cc-by-4.0
task_categories:
  - other
tags:
  - pathfinding
  - gpu-computing
  - benchmark
  - neuromorphic
  - navigation
  - eikonal-equation
  - robotics
  - real-time
size_categories:
  - n<1K

Optical Neuromorphic Eikonal Solver - Benchmark Datasets

Overview

Benchmark datasets for evaluating the Optical Neuromorphic Eikonal Solver, a GPU-accelerated pathfinding algorithm achieving 30-300ร— speedup over CPU Dijkstra.

๐ŸŽฏ Key Results

  • 134.9ร— average speedup vs CPU Dijkstra
  • 0.64% mean error (sub-1% accuracy)
  • 1.025ร— path length (near-optimal paths)
  • 2-4ms per query on 512ร—512 grids

๐Ÿ“Š Dataset Content

5 synthetic pathfinding test cases covering diverse scenarios:

File Grid Size Cells Obstacles Speed Field Difficulty
sparse_128.npz 128ร—128 16,384 10% Uniform Easy
medium_256.npz 256ร—256 65,536 20% Uniform Medium
gradient_256.npz 256ร—256 65,536 20% Gradient Medium
maze_511.npz 511ร—511 261,121 30% (maze) Uniform Hard
complex_512.npz 512ร—512 262,144 30% Random Hard

Plus: benchmark_results.csv with performance metrics

๐Ÿ“‹ Format

Each .npz file contains:

{
    'obstacles': np.ndarray,  # (H,W) float32, 1.0=blocked, 0.0=free
    'speeds': np.ndarray,     # (H,W) float32, propagation speed
    'source': np.ndarray,     # (2,) int32, [x,y] start coordinates
    'target': np.ndarray,     # (2,) int32, [x,y] goal coordinates
    'metadata': str           # JSON with provenance info
}

๐Ÿ”ง Loading Data

import numpy as np
from huggingface_hub import hf_hub_download

# Download dataset
file_path = hf_hub_download(
    repo_id="Agnuxo/optical-neuromorphic-eikonal-benchmarks",
    filename="maze_511.npz",
    repo_type="dataset"
)

# Load
data = np.load(file_path, allow_pickle=True)
obstacles = data['obstacles']
speeds = data['speeds']
source = tuple(data['source'])
target = tuple(data['target'])

print(f"Grid: {obstacles.shape}")
print(f"Start: {source}, Goal: {target}")

๐ŸŽฎ Interactive Demo

Try the interactive pathfinding demo: Space Link

๐Ÿ“„ Paper & Code

๐Ÿ“š Citation

@misc{angulo2025optical,
  title={Optical Neuromorphic Eikonal Solver Benchmark Datasets},
  author={Angulo de Lafuente, Francisco},
  year={2025},
  publisher={Hugging Face},
  url={https://huggingface.co/datasets/Agnuxo/optical-neuromorphic-eikonal-benchmarks}
}

๐Ÿ“œ License

CC BY 4.0 (Creative Commons Attribution 4.0 International)

๐Ÿ”— Links