metadata
license: cc-by-4.0
task_categories:
- other
tags:
- pathfinding
- gpu-computing
- benchmark
- neuromorphic
- navigation
- eikonal-equation
- robotics
- real-time
size_categories:
- n<1K
Optical Neuromorphic Eikonal Solver - Benchmark Datasets
Overview
Benchmark datasets for evaluating the Optical Neuromorphic Eikonal Solver, a GPU-accelerated pathfinding algorithm achieving 30-300ร speedup over CPU Dijkstra.
๐ฏ Key Results
- 134.9ร average speedup vs CPU Dijkstra
- 0.64% mean error (sub-1% accuracy)
- 1.025ร path length (near-optimal paths)
- 2-4ms per query on 512ร512 grids
๐ Dataset Content
5 synthetic pathfinding test cases covering diverse scenarios:
| File | Grid Size | Cells | Obstacles | Speed Field | Difficulty |
|---|---|---|---|---|---|
| sparse_128.npz | 128ร128 | 16,384 | 10% | Uniform | Easy |
| medium_256.npz | 256ร256 | 65,536 | 20% | Uniform | Medium |
| gradient_256.npz | 256ร256 | 65,536 | 20% | Gradient | Medium |
| maze_511.npz | 511ร511 | 261,121 | 30% (maze) | Uniform | Hard |
| complex_512.npz | 512ร512 | 262,144 | 30% | Random | Hard |
Plus: benchmark_results.csv with performance metrics
๐ Format
Each .npz file contains:
{
'obstacles': np.ndarray, # (H,W) float32, 1.0=blocked, 0.0=free
'speeds': np.ndarray, # (H,W) float32, propagation speed
'source': np.ndarray, # (2,) int32, [x,y] start coordinates
'target': np.ndarray, # (2,) int32, [x,y] goal coordinates
'metadata': str # JSON with provenance info
}
๐ง Loading Data
import numpy as np
from huggingface_hub import hf_hub_download
# Download dataset
file_path = hf_hub_download(
repo_id="Agnuxo/optical-neuromorphic-eikonal-benchmarks",
filename="maze_511.npz",
repo_type="dataset"
)
# Load
data = np.load(file_path, allow_pickle=True)
obstacles = data['obstacles']
speeds = data['speeds']
source = tuple(data['source'])
target = tuple(data['target'])
print(f"Grid: {obstacles.shape}")
print(f"Start: {source}, Goal: {target}")
๐ฎ Interactive Demo
Try the interactive pathfinding demo: Space Link
๐ Paper & Code
- Paper: GitHub
- Code: GitHub Repository
- Author: Francisco Angulo de Lafuente
๐ Citation
@misc{angulo2025optical,
title={Optical Neuromorphic Eikonal Solver Benchmark Datasets},
author={Angulo de Lafuente, Francisco},
year={2025},
publisher={Hugging Face},
url={https://huggingface.co/datasets/Agnuxo/optical-neuromorphic-eikonal-benchmarks}
}
๐ License
CC BY 4.0 (Creative Commons Attribution 4.0 International)