|
|
---
|
|
|
license: cc-by-4.0
|
|
|
task_categories:
|
|
|
- other
|
|
|
tags:
|
|
|
- pathfinding
|
|
|
- gpu-computing
|
|
|
- benchmark
|
|
|
- neuromorphic
|
|
|
- navigation
|
|
|
- eikonal-equation
|
|
|
- robotics
|
|
|
- real-time
|
|
|
size_categories:
|
|
|
- n<1K
|
|
|
---
|
|
|
|
|
|
# Optical Neuromorphic Eikonal Solver - Benchmark Datasets
|
|
|
|
|
|
## Overview
|
|
|
|
|
|
Benchmark datasets for evaluating the **Optical Neuromorphic Eikonal Solver**, a GPU-accelerated pathfinding algorithm achieving **30-300ร speedup** over CPU Dijkstra.
|
|
|
|
|
|
## ๐ฏ Key Results
|
|
|
|
|
|
- **134.9ร average speedup** vs CPU Dijkstra
|
|
|
- **0.64% mean error** (sub-1% accuracy)
|
|
|
- **1.025ร path length** (near-optimal paths)
|
|
|
- **2-4ms per query** on 512ร512 grids
|
|
|
|
|
|
## ๐ Dataset Content
|
|
|
|
|
|
5 synthetic pathfinding test cases covering diverse scenarios:
|
|
|
|
|
|
| File | Grid Size | Cells | Obstacles | Speed Field | Difficulty |
|
|
|
|------|-----------|-------|-----------|-------------|------------|
|
|
|
| sparse_128.npz | 128ร128 | 16,384 | 10% | Uniform | Easy |
|
|
|
| medium_256.npz | 256ร256 | 65,536 | 20% | Uniform | Medium |
|
|
|
| gradient_256.npz | 256ร256 | 65,536 | 20% | Gradient | Medium |
|
|
|
| maze_511.npz | 511ร511 | 261,121 | 30% (maze) | Uniform | Hard |
|
|
|
| complex_512.npz | 512ร512 | 262,144 | 30% | Random | Hard |
|
|
|
|
|
|
Plus: `benchmark_results.csv` with performance metrics
|
|
|
|
|
|
## ๐ Format
|
|
|
|
|
|
Each `.npz` file contains:
|
|
|
|
|
|
```python
|
|
|
{
|
|
|
'obstacles': np.ndarray, # (H,W) float32, 1.0=blocked, 0.0=free
|
|
|
'speeds': np.ndarray, # (H,W) float32, propagation speed
|
|
|
'source': np.ndarray, # (2,) int32, [x,y] start coordinates
|
|
|
'target': np.ndarray, # (2,) int32, [x,y] goal coordinates
|
|
|
'metadata': str # JSON with provenance info
|
|
|
}
|
|
|
```
|
|
|
|
|
|
## ๐ง Loading Data
|
|
|
|
|
|
```python
|
|
|
import numpy as np
|
|
|
from huggingface_hub import hf_hub_download
|
|
|
|
|
|
# Download dataset
|
|
|
file_path = hf_hub_download(
|
|
|
repo_id="Agnuxo/optical-neuromorphic-eikonal-benchmarks",
|
|
|
filename="maze_511.npz",
|
|
|
repo_type="dataset"
|
|
|
)
|
|
|
|
|
|
# Load
|
|
|
data = np.load(file_path, allow_pickle=True)
|
|
|
obstacles = data['obstacles']
|
|
|
speeds = data['speeds']
|
|
|
source = tuple(data['source'])
|
|
|
target = tuple(data['target'])
|
|
|
|
|
|
print(f"Grid: {obstacles.shape}")
|
|
|
print(f"Start: {source}, Goal: {target}")
|
|
|
```
|
|
|
|
|
|
## ๐ฎ Interactive Demo
|
|
|
|
|
|
Try the interactive pathfinding demo: [Space Link](https://huggingface.co/spaces/Agnuxo/optical-neuromorphic-pathfinding-demo)
|
|
|
|
|
|
## ๐ Paper & Code
|
|
|
|
|
|
- **Paper**: [GitHub](https://github.com/Agnuxo1/optical-neuromorphic-eikonal-solver)
|
|
|
- **Code**: [GitHub Repository](https://github.com/Agnuxo1/optical-neuromorphic-eikonal-solver)
|
|
|
- **Author**: [Francisco Angulo de Lafuente](https://huggingface.co/Agnuxo)
|
|
|
|
|
|
## ๐ Citation
|
|
|
|
|
|
```bibtex
|
|
|
@misc{angulo2025optical,
|
|
|
title={Optical Neuromorphic Eikonal Solver Benchmark Datasets},
|
|
|
author={Angulo de Lafuente, Francisco},
|
|
|
year={2025},
|
|
|
publisher={Hugging Face},
|
|
|
url={https://huggingface.co/datasets/Agnuxo/optical-neuromorphic-eikonal-benchmarks}
|
|
|
}
|
|
|
```
|
|
|
|
|
|
## ๐ License
|
|
|
|
|
|
CC BY 4.0 (Creative Commons Attribution 4.0 International)
|
|
|
|
|
|
## ๐ Links
|
|
|
|
|
|
- Code: https://github.com/Agnuxo1/optical-neuromorphic-eikonal-solver
|
|
|
- Kaggle: https://www.kaggle.com/franciscoangulo
|
|
|
- ResearchGate: https://www.researchgate.net/profile/Francisco-Angulo-Lafuente-3
|
|
|
|